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Abstract 
 

An Inflation-Indexed Swap (IIS) is a derivative in which, at every payment date, the counterparties swap an inflation rate with a 

fixed rate. For the calculation of the Inflation Leg cash flows it is necessary to build a mathematical model suitable for the 

Consumer Price Index (CPI) projection. For this purpose, quants typically start by using market quotes for the Zero-Coupon swaps 

in order to derive the future trend of the inflation index, together with a seasonality model for capturing the typical periodical 

effects. In this study, we propose a forecasting model for inflation seasonality based on a Long Short Term Memory (LSTM) 

network: a deep learning methodology particularly useful for forecasting purposes. The CPI predictions are conducted using a 

FinTech paradigm, but in respect of the traditional quantitative finance theory developed in this research field. The paper is 

structured according to the following sections: the first two parts illustrate the pricing methodologies for the most popular IIS: the 

Zero Coupon Inflation-Indexed Swap (ZCIIS) and the Year-on-Year Inflation-Indexed Swap (YYIIS); section 3 deals with the 

traditional standard method for the forecast of CPI values (trend + seasonality), while section 4 describes the LSTM architecture, 

and section 5 focuses on CPI projections, also called inflation bootstrap. Then section 6 describes a robust check, implementing a 

traditional SARIMA model in order to improve the interpretation of the LSTM outputs; finally, section 7 concludes with a real 

market case, where the two methodologies are used for computing the fair-value for a YYIIS and the model risk is quantified. 
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1) Introduction 

Inflation has been rising since the end of 2020, mainly due to the reopening of the economy after the pandemic crisis. Despite 

central banks suggesting that this type of inflation will be transitory, market participants seem to believe otherwise. Financial 

institutions and investors base their expectations on two main clues: on one hand, the several constraints that the international supply 

chain have to currently face, and on the other hand, the financial stimuli that governments from all over the world have adopted to 

encourage their national economies. 

While nobody knows with certainty how high inflation will rise or how long it will persist, the expectations, that this round of 

inflation will not be so short as promised, have given investors an incentive for reconsidering financial products, able to protect the 

holder from the detrimental effects of the inflation; products that only in the recent past were almost disappeared. 

The present paper is part of this strand of literature and it aims to shed light on the seasonality modeling in Inflation Indexed Swaps 

(IIS), a derivative contract in which, at every payment date, the counterparties swap an inflation rate with a fixed interest rate. 

This study aims to extend the existing literature concerning the integration of machine learning in the field of quantitative finance. 

Machine learning methodologies are in fact increasingly spreading in the financial sector. Among the numerous examples of 

applications proposed by literature, the most popular ones are mainly aimed at solving the following problems: 

 Input data quality (Pendyala, 2018) 

 Innovative algo-trading techniques (De Prado, 2018) 

 Optimal portfolio management (Heaton et al., 2017) 

 Pattern recognition and classification (Kim, 2017) 

 Financial time-series forecasting as an alternative to traditional econometric approaches (ARIMA, Bayesian VAR, GARCH) 

(Mammadi, 2017; Yanui, 2017) 

It is more difficult to find evidence in the literature of artificial intelligence methodologies applied to exotic financial instruments 

pricing or about the integration of traditional quantitative finance theory with the new FinTech methodologies. The traditional 

implementation regards the numerical solution of the so-called fundamental Black-Scholes-Merton PDE through Radial Basis 

Functions (Company et al., 2018). Only more recently, the application of Regressive Neural Networks together with Monte Carlo 

method was suggested for evaluating early-exercise features in American and Bermuda option pricing in accordance with Longstaff-

Schwartz methodology (Lelong and Lapeyre, 2020). 

While the number of studies adopting machine learning techniques in the field of finance has grown quite rapidly, the field of 

research focusing on the identification of the seasonality effects with such methodologies is still limited. The research aims to bridge 

this gap proposing an innovative approach, through the design of a so-called long short-term memory (LSTM) network for the 

identification of the seasonality effects. In particular, the study implements a deep learning methodology able to consider potential 

highly nonlinear relationships between the values of the Consumer Price Index (CPI), sampled in the previous five years in 

accordance with the most common market standard convention. In fact. Bloomberg® and other well-known info-providers set this 

parameter equal to five years in their valuation platforms (e.g., the Bloomberg® SWIL and SWPM pricing modules). This setting is 

also adopted in the design of the LSTM network with the aim of maintaining this trading practice and of helping the interpretation of 

the results using the same market conventions. It is worth to note that the frequency of the sample in the considered time series is 

monthly: this is also a standard choice for the analysis of this index, given that it reflects the publishing time interval. 
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2) The pricing framework 

An Inflation-Indexed Swap (IIS) is a swap deal in which, for each payment date, 𝑇1, … , 𝑇𝑀, counterparty A pays to counterparty B 

the inflation rate in the considered period, while counterparty B pays to counterparty A the fixed rate. The inflation rate is calculated 

as the percentage return of the CPI over the reference time interval. 

There are two main types of IIS traded on the market: the Zero-Coupon Inflation-Indexed Swap (ZCIIS) and the Year-on-Year 

Inflation-Indexed Swap (YYIIS) (Brigo and Mercurio, 2006). 

In a ZCIIS, at the maturity date 𝑇𝑀, assuming 𝑇𝑀 = 𝑀 years, counterparty B pays to counterparty A the fixed quantity: 

 

𝑵[(𝟏 + 𝑲)𝑴 − 𝟏]  (1) 

 

Where 𝐾 and 𝑁 are the fixed interest rate and the principal, respectively.  

In return for this fixed payment, at the maturity date 𝑇𝑀,  counterparty A pays to counterparty B the floating amount: 

 

𝑵[
𝑰(𝑻𝑴)

𝑰𝟎
− 𝟏]  (2) 

 

Where 𝑰𝟎 is the reference CPI and 𝑰(𝑻𝑴) is the value of the index at time  𝑻𝑴. 

In a YYIIS, for each payment date 𝑇𝑖, counterparty B pays to counterparty A the fixed amount:   

 

𝑵𝝋𝒊𝑲  (3) 

 

Where 𝜑
𝑖
 is the year fraction of the fixed swap leg in the range [𝑇𝑖−1, 𝑇𝑖], 𝑇0 ≔ 0 and 𝑁 is the principal of the deal. 

Counterparty A pays to counterparty B the floating amount equal to: 

 

𝑵𝝋𝒊 [
𝑰(𝑻𝒊)

𝑰(𝑻𝒊−𝟏)
− 𝟏]  (4) 

 

ZCIIS and YYIIS are typically quoted in terms of the corresponding equivalent fixed rate 𝐾. 

  

2.1) Zero-Coupon Inflation-Indexed Swap (ZCIIS) pricing  

The standard arbitrage-free pricing theory leads to the estimation of the fair value for a ZCIIS inflation leg at time 𝑡, 0 ≤ 𝑡 ≤ 𝑇𝑀 

(Brigo and Mercurio, 2006): 

 

𝒁𝑪𝑰𝑰𝑺(𝒕, 𝑻𝑴, 𝑰𝟎, 𝑵) = 𝑵 ⋅ 𝑬𝒏 {𝒆𝒙𝒑 (−∫ 𝒏(𝒖)𝒅𝒖
𝑻𝑴

𝒕
) [

𝑰(𝑻𝑴)

𝑰𝟎
− 𝟏]| Ϝ𝒕}  (5) 

 

Where Ϝ𝑡 is the 𝜎-algebra generated by the stochastic process of the underlying up to time 𝑡. 

The nominal price of a zero coupon bond is equal to the price of a contract that pays one unit of the CPI Index at bond maturity. In 

formulas, for each 𝑡 < 𝑇: 

 

𝑰(𝒕)𝑷𝒓(𝒕, 𝑻) = 𝑰(𝒕)𝑬𝒓 {𝐞𝐱𝐩 (−∫ 𝒓(𝒖)𝒅𝒖
𝑻

𝒕
)| Ϝ𝒕} = 𝑬𝒏 {𝐞𝐱𝐩 (−∫ 𝒏(𝒖)𝒅𝒖

𝑻

𝒕
) 𝑰(𝑻)| Ϝ𝒕}  (6) 

 

Then Equation (5) becomes: 

 

𝒁𝑪𝑰𝑰𝑺(𝒕, 𝑻𝑴, 𝑰𝟎, 𝑵) = 𝑵 [
𝑰(𝒕)

𝑰𝟎
𝑷𝒓(𝒕, 𝑻𝑴) − 𝑷𝒏(𝒕, 𝑻𝑴)]  (7) 

Where 𝑷𝒏(𝒕, 𝑻𝑴) is the Zero-coupon bond price at time 𝒕 for the maturity 𝑻 in the nominal economy and 𝑷𝒓(𝒕, 𝑻𝑴) is the Zero-

coupon bond price at time 𝒕 for the maturity 𝑻 in the real economy. 

 

Equation (7) for a valuation at time 𝑡 = 0 simplifies to: 

 

𝒁𝑪𝑰𝑰𝑺(𝟎, 𝑻𝑴, 𝑵) = 𝑵[𝑷𝒓(𝟎, 𝑻𝑴) − 𝑷𝒏(𝟎, 𝑻𝑴)]  (8) 

 

Equations (7) and (8) lead to an important result in the evaluation of the derivative because the pricing formula is independent from 

the model assumptions given that it follows from the absence of arbitrage. As a result, we are able to unambiguously derive the 

prices for the zero-coupon bonds starting from the quoted prices of the zero-coupon inflation-indexed swaps (Mercurio, 2005). 

In fact, by equating (8) with the actualized nominal value of (1) and obtaining 𝑃𝑛(0, 𝑇𝑀) from the current curve of the nominal 

zero-coupons, we are able to solve the equation for the unknown quantity 𝑃𝑟(0, 𝑇𝑀). 

Therefore, we get: 

 

𝑷𝒓(𝟎, 𝑻𝑴) = 𝑷𝒏(𝟎, 𝑻𝑴)[𝟏 + 𝑲(𝑻𝑴)]𝑴 (9) 
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(Kazziha, 1999) defined the T-forward CPI at time t as the fixed quantity 𝑋 to be exchanged at time 𝑇 for the CPI 𝐼(𝑇), for which 

such a swap has a zero value. 

From formula (6), we get 

 

𝑰(𝒕)𝑷𝒓(𝒕, 𝑻) = 𝑿𝑷𝒏(𝒕, 𝑻)  (10) 

 

The value at time 0 of a 𝑇𝑀-forward CPI can be obtained from the market quotation of 𝐾(𝑇𝑀) applying the formula: 

 

𝑰𝑴(𝟎) = 𝑰(𝟎) ⋅ [𝟏 + 𝑲(𝑻𝑴)]𝑴    (11) 

 

This result is perfectly equivalent to (9). 

  

2.2) Year-on-Year Inflation Indexed Swap (YYIIS) pricing  

Pricing a YYIIS is more complicated than the ZCIIS: the pay-off value at time 𝑇𝑖 , 𝑡 < 𝑇𝑖   is 

 

𝒀𝒀𝑰𝑰𝑺(𝒕, 𝑻𝒊−𝟏, 𝑻𝒊, 𝝍𝒊, 𝑵) = 𝑵𝝍𝒊𝑬𝒏 {𝐞𝐱𝐩 (−∫ 𝒏(𝒖)𝒅𝒖
𝑻𝒊

𝒕
) [

𝑰(𝑻𝒊)

𝑰(𝑻𝒊−𝟏)
− 𝟏]| Ϝ𝒕}   (12) 

 

Assuming 𝑡 < 𝑇𝑖−1 , we can estimate: 

 

𝑵𝝍𝒊𝑬𝒏{𝐞𝐱𝐩 ( −∫ 𝒏(𝒖)𝒅𝒖
𝑻𝒊−𝟏

𝒕
) 𝑬𝒏{𝐞𝐱𝐩 ( −∫ 𝒏(𝒖)𝒅𝒖

𝑻𝒊

𝑻𝒊−𝟏
) [ 

𝑰(𝑻𝒊)

𝑰(𝑻𝒊−𝟏)
− 𝟏]| 𝑭𝒕−𝟏}|𝑭𝒕}  (13) 

 

The inner expectation in Equation (13) is the 𝑍𝐶𝐼𝐼𝑆(𝑇𝑖−1, 𝑇𝑖 , 𝐼(𝑇𝑖−1), 1): 

 

𝑵𝝍𝒊𝑬𝒏 {𝐞𝐱𝐩 (−∫ 𝒏 𝒅𝒖
𝑻𝒊−𝟏

𝒕

) [𝑷𝒓(𝑻𝒊−𝟏, 𝑻𝒊) − 𝑷𝒏(𝑻𝒊−𝟏, 𝑻𝒊)]| Ϝ𝒕} = 

= 𝑵𝝍𝒊𝑬𝒏 {𝐞𝐱𝐩 (−∫ 𝒏(𝒖)𝒅𝒖
𝑻𝒊−𝟏

𝒕
) [𝑷𝒓(𝑻𝒊−𝟏, 𝑻𝒊)]| Ϝ𝒕} − 𝑵𝝍𝒊𝑷𝒏(𝒕, 𝑻𝒊) (14) 

 

The last expected value can be seen as the nominal price of a derivative that pays the price of the zero coupon bond, 𝑃𝑟(𝑇𝑖−1, 𝑇𝑖) in 

nominal unit at time 𝑇𝑖−1. If the real rates were deterministic, then this price would be the discounted value, in nominal terms, of the 

forward price of the real bond. In this case we would have: 

 

𝑬𝒏 {𝐞𝐱𝐩 (−∫ 𝒏(𝒖)𝒅𝒖
𝑻𝒊−𝟏

𝒕
) [𝑷𝒓(𝑻𝒊−𝟏, 𝑻𝒊)]| Ϝ𝒕} = 𝑷𝒓(𝑻𝒊−𝟏, 𝑻𝒊)𝑷𝒏(𝒕, 𝑻𝒊−𝟏) =

𝑷𝒓(𝒕,𝑻𝒊)

𝑷𝒓(𝒕,𝑻𝒊−𝟏)
𝑷𝒏(𝒕, 𝑻𝒊−𝟏)  (15) 

 

However, the real rates are stochastic and the expectation is model-dependent. Here, we propose the YYIIS pricing according to the 

Jarrow-Yildirim (JY) model (Jarrow and Yildirim, 2003). 

Denoting by 𝑄
𝑛
𝑇 the T-forward nominal measure for a generic maturity 𝑇 and 𝐸𝑛

𝑇 the associated expectation, we can write: 

 

𝒀𝒀𝑰𝑰𝑺(𝒕, 𝑻𝒊−𝟏, 𝑻𝒊, 𝝍𝒊, 𝑵) = 𝑵𝝍𝒊𝑷𝒏(𝒕, 𝑻𝒊−𝟏)𝑬𝒏
𝑻𝒊−𝟏{𝑷𝒓(𝑻𝒊−𝟏, 𝑻𝒊)|Ϝ𝒕} − 𝑵𝝍𝒊𝑷𝒏(𝒕, 𝑻𝒊)   (16) 

 

Recalling the zero-coupon bond price formula in accordance with the Hull-White model (Brigo and Mercurio, 2006): 

 

𝑷𝒓(𝒕, 𝑻) = 𝑨𝒓(𝒕, 𝑻) 𝐞𝐱𝐩[−𝑩𝒓(𝒕, 𝑻) ⋅ 𝒓(𝒕)]   (17) 

 

where: 

 

𝑩𝒓(𝒕, 𝑻) =
𝟏

𝒂𝒓

[𝟏 − 𝐞𝐱𝐩[−𝒂𝒓(𝑻 − 𝒕)]]  (18) 

 

𝑨𝒓(𝒕, 𝑻) =
𝑷𝒓

𝑴(𝟎,𝑻)

𝑷𝒓
𝑴(𝟎,𝒕)

exp{𝑩𝒓(𝒕, 𝑻)𝒇
𝒓
𝑴(𝟎, 𝒕) −

𝝈𝒓
𝟐

𝟒𝒂𝒓

[𝟏 − 𝐞𝐱𝐩(−𝟐𝒂𝒓𝒕)]𝑩𝒓(𝒕, 𝑻)𝟐}  (19) 

 

And considering that the instantaneous real rates evolve under 𝑄
𝑛
𝑇𝑖−1, according to the stochastic differential equation:  

 

𝒅𝒓(𝒕) = [−𝝆𝒏,𝒓𝝈𝒏𝝈𝒓𝑩𝒏(𝒕, 𝑻𝒊−𝟏) + 𝝑𝒓(𝒕) − 𝝆𝒓,𝑰𝝈𝑰𝝈𝒓 − 𝒂𝒓𝒓(𝒕)]𝒅𝒕 + 𝝈𝒓𝒅𝑾𝒓
𝑻𝒊−𝟏(𝒕)  (20) 

 

with  𝑊𝑟

𝑇𝑖−1
 a Brownian motion under the 𝑄

𝑛
𝑇𝑖−1 measure, we get: 

 

𝒀𝒀𝑰𝑰𝑺(𝒕, 𝑻𝒊−𝟏, 𝑻𝒊, 𝝍𝒊, 𝑵) =  𝑵𝝍𝒊𝑷𝒏(𝒕, 𝑻𝒊−𝟏)
𝑷𝒓(𝒕,𝑻𝒊)

𝑷𝒓(𝒕,𝑻𝒊−𝟏)
𝐞𝐱𝐩[𝑪(𝒕, 𝑻𝒊−𝟏, 𝑻𝒊)] − 𝑵𝝍𝒊𝑷𝒏(𝒕, 𝑻𝒊) (21) 

 

where: 
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𝑪(𝒕, 𝑻𝒊−𝟏, 𝑻𝒊) = 𝝈𝒓𝑩𝒓(𝑻𝒊−𝟏, 𝑻𝒊)[𝑩𝒓(𝒕, 𝑻𝒊−𝟏)(𝝆𝒓,𝑰𝝈𝑰 −
𝟏

𝟐
𝝈𝒓𝑩𝒓(𝒕, 𝑻𝒊−𝟏) +

𝝆𝒏,𝒓𝝈𝒏

𝒂𝒏+𝒂𝒓
(𝟏 + 𝒂𝒓𝑩𝒏(𝒕, 𝑻𝒊−𝟏))) −

𝝆𝒏,𝒓𝝈𝒏

𝒂𝒏+𝒂𝒓
𝑩𝒏(𝒕, 𝑻𝒊−𝟏)](22) 

 

In the Yarrow-Yildirim model (Jarrow and Yildirim, 2003), the expected value for the price of a zero-coupon bond under a nominal 

forward measure is equal to the current forward price of the bond multiplied by a correction factor, which depends on the 

instantaneous volatility of the nominal rate, 𝜎𝑛, of the real rate 𝜎𝑟, of the CPI 𝜎𝐼 and on the instantaneous correlation between the 

real rate and the CPI 𝜌
𝑟,𝐼

 . 

The exponential of 𝐶 represents the mentioned correction term: this takes into account the stochasticity of the real rates and, 

consequently, is zero for 𝜎𝑟 = 0. The value at time 𝑡 of the swap inflation-indexed leg is obtained through the summation of all 

floating payments. Therefore: 

 

𝒀𝒀𝑰𝑰𝑺(𝒕, 𝓣,𝜳,𝑵) = 𝑵𝝍𝜾(𝒕)[
𝑰(𝒕)

𝑰(𝑻𝜾(𝒕)−𝟏)
𝑷𝒓(𝒕, 𝑻𝜾(𝒕)) − 𝑷𝒏(𝒕, 𝑻𝜾(𝒕))] + 𝑵 ∑ 𝝍𝒊

𝑴

𝒊=𝜾(𝒕)+𝟏

[𝑷𝒏(𝒕, 𝑻𝒊−𝟏) 

 
𝑷𝒓(𝒕,𝑻𝒊)

𝑷𝒓(𝒕,𝑻𝒊−𝟏)
𝐞𝐱𝐩[𝑪(𝒕, 𝑻𝒊−𝟏, 𝑻𝒊)] − 𝑷𝒏(𝒕, 𝑻𝒊)] (23) 

 

Where: 𝒯 ≔ {𝑇1, … , 𝑇𝑀}, 𝛹 ≔ {𝜓1, … , 𝜓𝑀} and 𝜄(𝑡) = min{𝑖: 𝑇𝑖 > 𝑡} where the first payment after time 𝑡 has been priced 

according to (7). 

 

Setting 𝑡 = 0 we get the pricing formula evaluating the leg as of today (Mercurio, 2005): 

 

𝒀𝒀𝑰𝑰𝑺(𝟎, 𝓣,𝜳,𝑵) = 𝑵𝝍𝟏[𝑷𝒓(𝟎, 𝑻𝟏) − 𝑷𝒏(𝟎, 𝑻𝟏)] + 𝑵∑ 𝝍𝒊 [𝑷𝒏(𝟎, 𝑻𝒊−𝟏)
𝑷𝒓(𝟎,𝑻𝒊)

𝑷𝒓(𝟎,𝑻𝒊−𝟏)
𝐞𝐱𝐩[𝑪(𝟎, 𝑻𝒊−𝟏, 𝑻𝒊)] − 𝑷𝒏(𝟎, 𝑻𝒊)]

𝑴
𝒊=𝟐  (24) 

 

 

3) CPI index traditional simulation 

Through (11), we are able to project the index values in the future according to the swap rates listed on the market following the 

pricing framework. Since the frequency with which the index is published is monthly, it is necessary to provide a simulation of the 

CPI with such periodicity (Caligaris and Giribone, 2018). The missing curve points are therefore estimated by adding the logarithm 

of the monthly increase between a calculated value ℑ𝑀(0) and its subsequent value  ℑ𝑀+1(0): 

𝜟𝕴𝑴 =
𝒍𝒏(

𝕴𝑴+𝟏(𝟎)

𝕴𝑴(𝟎)
)

𝟏𝟐⋅𝝉
    (25) 

 

Where 𝜏 is the time interval expressed in year fraction between ℑ𝑀(0) and ℑ𝑀+1(0). 

The points making up the simulated curve of the consumer price index are defined by the formula: 

 

𝕴𝒊+𝟏 = 𝕴𝒊 𝐞𝐱𝐩(𝚫𝕴𝑴 + 𝕽𝑴), 𝕴𝑴(𝟎) ≤ 𝕴𝒊 ≤ 𝕴𝑴+𝟏(𝟎)  (26) 

 

The standard methodology, suggested by the main benchmark info provider pricing modules, takes into account the index 

seasonality algebraically adding the normalized residuals  ℜ𝑀  obtained from the historical values of the CPI, in accordance with the 

expression (27): 

 

𝕽𝑴 =

∑ 𝐥𝐧[
𝕴𝒊+𝟏
𝑴𝒐𝒏𝒕𝒉𝒍𝒚

𝕴𝒊
𝑴𝒐𝒏𝒕𝒉𝒍𝒚]

𝒔𝒕𝒂𝒈𝒚𝒆𝒂𝒓
𝒊=𝟏

𝒔𝒕𝒂𝒈𝒚𝒆𝒂𝒓
−

∑ 𝐥𝐧[
𝕴𝒊+𝟏
𝑴𝒐𝒏𝒕𝒉𝒍𝒚

𝕴𝒊
𝑴𝒐𝒏𝒕𝒉𝒍𝒚]

𝟏𝟐⋅𝒔𝒕𝒂𝒈𝒚𝒆𝒂𝒓
𝒊=𝟏

𝟏𝟐⋅𝒔𝒕𝒂𝒈𝒚𝒆𝒂𝒓
  (27) 

 

Where ℜ𝑀 are the standardized residuals obtained from the effect of seasonality over 𝑠𝑡𝑎𝑔𝑦𝑒𝑎𝑟 years. The first contribution is the 

logarithmic variation of the CPI values on the considered month; the second one represents the overall logarithmic variation 

recorded in the time period considered for seasonality. 

The objective of this study is to propose a deep learning methodology (LSTM network) able to simulate the seasonality of the 

inflation index. In this way, in addition to introducing a more robust and flexible econometric methodology than the standard one, 

the integration between the classical quantitative finance theory together with Fintech paradigms can be considered an interesting 

feature (Bonini et al., 2019). 

 

In fact, the determination of the swap fair value is implemented by applying the formulas described above for the ZCIIS and YYIIS 

and therefore in total agreement with canonical principles; moreover, a Long Short-Term Memory network will be implemented for 

a more reliable simulation of the CPI seasonality. The next paragraph deals with the explanation of the architecture for a standard 

LSTM network. 
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4) LSTM network architecture and training procedure 

LSTM networks are also able to learn long-term relationships between the time intervals of a time series, therefore without the need 

to pre-set the number of time lags, as occurs in other dynamic recurrent networks, such as Nonlinear AutoRegressive (NAR) and 

Nonlinear Auto-Regressive with exogenous variables (NARX) (de Simon-Martin et al., 2020).  

A common LSTM unit is composed of a cell, an input gate and a forget gate. The cell remembers values over arbitrary time 

intervals and the three gates regulate the flow of information into and out of the cell. Intuitively, the cell is responsible for keeping 

track of the dependencies between the elements in the input sequence. The input gate controls the extent to which a new value flows 

into the cell, the forget gate controls the extent to which a value remains in the cell and the output gate controls the extent to which 

the value in the cell is used to compute the output activation of the LSTM unit (Hochreiter and Schmidhuber, 1997). The activation 

function of the LSTM gates is often the logistic sigmoid. Figure 1 shows how the flux of a data sequence 𝑌 with 𝐶 features (or 

channels) of length 𝑆 has been processed into a LSTM layer. In the block diagram, ℎ𝑡 and 𝑐𝑡 are, respectively, the output (also 

known as hidden state) and the cell state at time 𝑡. 

 

 

 

Figure 1. LSTM network architecture 

 

The first LSTM block uses the initial state of the network and the first time-step of the sequence in order to compute the first output 

and the first update of the cell state. At time 𝑡, the block uses the current state of the network (𝑐𝑡−1, ℎ𝑡−1) and the next step of the 

sequence for estimating the output and updating the current state of the cell 𝑐𝑡. The layer state is characterized by the hidden state 

(also known as the output state) and the cell state. The hidden state at time step 𝑡 contains the output of the LSTM layer for the 

current time step. The cell state contains the information learnt in the previous steps. For each time step, the layer adds or removes 

information from the cell state. The layer controls these updates using gates. The following components control the cell state and the 

hidden state of the layer (Hochreiter and Schmidhuber, 1997): 

 Input gate (𝑖): Control level of cell state update 

 Forget gate (𝑓): Control level of cell state reset (forget) 

 Cell candidate (𝑔): Add information to cell state 

 Output gate (𝑜): Control level of cell state added to hidden state 

Fig. 2 shows how the gates (𝑖, 𝑓, 𝑔, 𝑜) process the signal at time 𝑡 

 

 

Figure 2. Signal processed by the gates 
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In a LSTM, the parameters that are subjected to calibration are: the input weights (𝑊), the recurrent weights (𝑅) and the biases (𝑏) 

(de Simon-Martin et al., 2020). 𝑊, 𝑅 and 𝑏 are the arrays built through the concatenations of such parameters for each component: 

𝑊 = (𝑊𝑖 ,𝑊𝑓 ,𝑊𝑔,𝑊𝑜)
⊤
𝑅 = (𝑅𝑖, 𝑅𝑓 , 𝑅𝑔, 𝑅𝑜)

⊤
𝑏 = (𝑏𝑖 , 𝑏𝑓 , 𝑏𝑔, 𝑏𝑜)

⊤
 

where 𝑖, 𝑓, 𝑔 and 𝑜 denote the input gate, the forget gate, the cell candidate and the output gate, respectively. 

At time step 𝑡, the cell state is given by: 

 

𝒄𝒕 = 𝒇
𝒕
 ⊙ 𝒄𝒕−𝟏 + 𝒊𝒕 ⊙ 𝒈

𝒕
 (28) 

 

Where ⊙ is the Hadamard product operator. 

At time step 𝑡, the hidden state is given by: 

 

𝒉𝒕 = 𝒐𝒕  ⊙ 𝝈𝒄(𝒄𝒕) (29) 

 

Where 𝜎𝑐 is the activation function of the state (typically a hyperbolic tangent). 

 

The following equations define the components at time step 𝑡: 

 Input gate (𝑖): 𝒊𝒕 = 𝝈𝒈(𝑾𝒊𝒚𝒕
+ 𝑹𝒊𝒉𝒕−𝟏 + 𝒃𝒊) (30) 

 

 Forget gate (𝑓): 𝒇
𝒕
= 𝝈𝒈(𝑾𝒇𝒚𝒕

+ 𝑹𝒇𝒉𝒕−𝟏 + 𝒃𝒇) (31) 

 

 Cell candidate (𝑔): 𝒈
𝒕
= 𝝈𝒄(𝑾𝒈𝒚

𝒕
+ 𝑹𝒈𝒉𝒕−𝟏 + 𝒃𝒈) (32) 

 

 Output gate (𝑜): 𝒐𝒕 = 𝝈𝒈(𝑾𝒐𝒚𝒕
+ 𝑹𝒐𝒉𝒕−𝟏 + 𝒃𝒐) (33) 

𝜎𝑔 is the activation function of the gate, which is typically a sigmoid. 

 

LSTMs are supervised networks, as a result, after the design of the model, it is essential to implement a robust algorithm for the 

training phase. This is the part in which the designer decides how many neurons must be implemented in order to make reliable 

predictions. In order to obtain valid models for forecasting purposes it is necessary to conduct statistical and econometric tests. The 

objective of the first kind of test is to tune the LSTM in order to have a good fitting of the training dataset. 

The gap between the target and the model output is reduced through an ADAM optimizer as the network training process 

progresses, so it may happen that the estimated relationship returns a perfect fit of the sampled data (in-sample), making vain the 

attempt at generalization, fundamental for making the network capable of processing different data (out-of-sample). 

For this reason and especially in the field of deep learning where there is a huge number of parameters to tune in order to capture 

highly non-linear relationships, special measures for avoiding overfitting must be taken into consideration. As a result, the first 

intervention, shared also with traditional recurrent networks, such as NAR and NARX, is to work directly on the dataset through a 

random-splitting method. The data set configuration used for the network is:  

 70% of the set will form the training set, thus the optimization will be carried out with respect to its loss function (𝐽) only.  

 15% of the set will be assigned to the validation set, thus, despite the weights being updated with respect to the train set, the 

algorithm saves the weights that minimize 𝐽 on the validation set, in order to avoid data overfitting and trying to reach a good 

generalization.  

 15% of the data set will form the test set, so that the network performance can be measured on data that it has never seen before, 

as the ultimate objective of a neural network user is to employ the network on completely new data.  

The second kind of statistical measures, which are traditionally applied in the field of deep learning, work directly on the network. 

The implemented measures can be summarized as follows:  

 Adding a term to the traditional loss function (𝑅𝑀𝑆𝐸) which put in a penalty (the 𝜆 coefficient) if a further weight (𝜔) associated 

to an arch has been activated:  

 

      𝑱 = 𝑹𝑴𝑺𝑬 +
𝟏

𝟐
𝝀‖𝝎‖𝟐   (34) 

 

 Dropout, which is a technique consisting of training only a group of randomly selected neurons rather than the entire network: a 

percentage (a popular choice is 25%) determines how many neurons to choose and the remaining ones are deactivated. Since the 

neurons and the relative weights are continuously modified, it is thus possible to avoid overfitting.  

These metrics are thus implemented in the forecaster in order to have a reliable fitting.  

Given that the objective is to perform a prediction of the most reasonable CPI projections, we also implement a test which has an 

econometric nature. It is based on the verification of the autocorrelation error absence so that the model error is unstructured and the 

predicted values can be econometrically reliable. 
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5) Comparison between standard and LSTM techniques for the CPI projection 

In order to compare the standard inflation bootstrap methodology with the LSTM approach, we use the market data retrieved from 

Bloomberg on 31st December 2020. Swap rate values, 𝐾(𝑇𝑀), quoted by the market at the reference date are reported in Table 1, 

together with the estimation of the CPI projections, ℑ𝑀(0)  and the Δℑ𝑀, according to Formula (11) and (25). The estimation of 

Δℑ𝑀 is useful in order to have the inflation values expressed on monthly basis (Giribone, 2020). According to Equation (26), this 

information allows us to project the CPI values for the next 10 years using a market-oriented approach without taking into account 

the seasonality. In order to add this essential contribution for the forecast into the model, we have to consider the monthly 

normalized residuals, ℜ𝑀, calculated starting from the past CPI realizations. The traditional way to implement this task is to apply 

Equation (27). Using the traditional market standard preference to consider the previous five years of the CPI time-series, we get the 

ℜ𝑀 reported in the second column of Table 2.  Applying recursively equation (26), the projections for the CPI are obtained for the 

following years. These simulations are reported in Fig. 3 together with the past values. The black line represents the past five years 

CPI values used for the estimation of the seasonality effect; the blue line represents the CPI projections without seasonality: it 

connects the blue dots which are the ℑ𝑀(0) whose estimations are strictly connected to the 𝐾(𝑇𝑀) quotation and the red line 

represents the projections of the CPI index taking into account the seasonality through the monthly annualized residuals ℜ𝑀. 

According to this approach, we have a “ready-to-use” seasonality model that is able to take into consideration market-implied IIS 

rates. Despite this being the market-standard approach proposed by the main info-providers, this methodology has important 

drawbacks from an econometric perspective. 

In fact, it does not take into account basic indicators, such as 𝑅2 or the absence of autocorrelation in the errors: it substantially 

repeats the same twelve-monthly residuals over time, as shown in Fig. 4. 

The black line represents the historical CPI log-returns and the red one shows their projections in accordance with the standard 

approach. 

 

𝑻𝑴      𝑲(𝑻𝑴) [%] 𝕴𝑴(𝟎)      𝚫𝕴𝑴 [%] 

1 1.206      105.8010 0.0999 

2 1.010      106.6624 0.0676 

3 0.966      107.5989 0.0729 

4 0.972      108.6642 0.0821 

5 1.003      109.8862 0.0932 

6 1.034      111.1986 0.0989 

7 1.055      112.5090 0.0976 

8 1.081      113.9302 0.1046 

9 1.111      115.4697 0.1119 

10 1.133       117.0034 0.1100 

 

Table 1. Mid Price 𝑲(𝑻𝑴),𝕴𝑴(𝟎) and 𝜟𝕴𝑴 (Market Data: 31st December 2020) 

 

Month (M) Standard Approach [%]       LSTM-Method I [%] 

January (1) -1.198 -0.761 

February (2) 0.174 -0.018 

March (3) 0.836 0.575 

April (4) 0.264 0.292 

May (5)  0.081 0.019 

June (6) 0.086 0.009 

July (7) -0.529 -0.272 

August (8) -0.027 -0.375 

September (9) 0.246 0.339 

October (10) 0.111 0.188 

November (11) -0.219 -0.105 

December (12) 0.175 0.108 

Table 2. Historical Normalized residuals, 𝕽𝑴, in accordance with the standard methodology (Market Data: 12/31/2020) 
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Figure 3. CPI time series and its projection (standard methodology) 

 

The idea is to improve the seasonality model using a method with the following characteristics: 

A) it is reliable from an econometric and statistical perspective 

B) it is able to deal with potentially high non-linearities recorded by the financial series. 

C) it takes into account market information (ZCIIS rates) and, consequently, it is aligned with traditional quantitative finance market 

best-practice (see paragraph 2). 

 

With these objectives in mind, we design a Long Short-Term Memory (LSTM) network with the characteristics illustrated in 

paragraph 4. For the training set, we use the monthly return of the index computed in the last 5 years: ln [
ℑ𝑖+1

𝑀𝑜𝑛𝑡ℎ𝑙𝑦

ℑ𝑖
𝑀𝑜𝑛𝑡ℎ𝑙𝑦]. The number of 

hidden units in the LSTM block is tuned in function of the performances recorded by the network. Using a layer made of 100 

neurons, adopting an ADAM optimizer and implementing a drop-out technique in order to avoid overfitting we can achieve 

excellent results in the training phase (de Simon-Martin et al., 2020). From a statistical point of view, as shown in Fig. 5, we obtain 

a high  𝑅2, meaning that the fitting over the historical time series can be considered extremely good. From an econometric point of 

view, Fig. 6 shows that the auto-correlation in the errors for the tuned model has been kept, with a confidence interval equal to 95%, 

under an acceptable threshold (represented in red dotted lines) for the non-zero lags (Tsay, 2010). 

 

 
Figure 4. Historical and perspective estimation for seasonality using standard methodology 
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Figure 5. Regression plot for the LSTM network. 𝑹𝟐 = 𝟎. 𝟗𝟖 

 

Having checked the reliability of the LSTM network through statistical and econometric test, we proceed to make the CPI forecasts. 

Facing the forecasting problem with the Deep Learning approach, the projections have a more realistic forward-looking behavior 

thanks to both the advanced technology (deep learning) and the careful tuning as shown in Figure 7. 

 

 

 

Figure 6. Auto-correlation error for LSTM network 

 

 



 

RISK MANAGEMENT MAGAZINE – Volume 16, Issue 3 – Page - 63 - 

 

 

 

 
 

Figure 7. Historical and perspective estimation for seasonality using the Deep Learning methodology 

 

Performing these seasonality projections guarantees to be compliant with points A) and B) of the desired requirements but not with 

the last one. In fact the log-returns projections cannot be used as-is in the pricing framework because they do not pass through the 

market-implied future values (see Table 1). Starting from these LSTM projections, two approaches can be followed in order to take 

into consideration this quantitative finance aspect: 

LSTM-Method I) determines the monthly standardized residuals along the overall forecasted values. 

LSTM-Method II) determines the monthly standardized residuals among the time intervals delimited by the market-implied rates. 

LSTM-Method I) does not introduce an innovative idea with respect to the standard method with the difference that this is applied to 

the forecasted CPI values instead of using the historical values. It is substantially a forward-looking standard method. The twelve 

standardized residuals are reported in the third column of Table 2. 

LSTM-Method II) applies the normalization of future residuals not on the entire forecasted horizon, but it considers the projected 

values for the computation among the time intervals delimited by the market-implied rates. This approach is less similar to the 

traditional one but it allows a more precise CPI seasonality projection in which the constrained C) remains satisfied. For this reason, 

we believe that the second approach has to be preferred. 

LSTM-Method I) does not change the iterative formula (26) for  𝕴  because the seasonality term remains constant over the years and 

it can assume only twelve values, as reported in Table 2. The main difference between the standard methodology and this approach 

is a different estimation of the normalized residuals: the former considers the previous five years of the CPI values (as a result it is a 

backward-looking method), while the latter improves the forecasting, considering the projected five years values (as a result it is a 

forward-looking method). Despite this improvement, it remains a static technique.  

LSTM-Method II) does not only introduce a forward-looking view, but also adds a more interesting contribution in terms of 

dynamics. In this second case the formula (26) slightly changes, because of the insertion of an index j that allows to clarify the exact 

contribution of 𝕽𝑴
𝒋    in connection with the cluster it belongs to. This happens because it changes between the time intervals defined 

by the listed ZCIIS (𝒋 = 𝟏,… , 𝑻𝑴). 

 

 

6) Robust check of the LSTM results 

One of the main problems associated with dynamics neural networks for forecasting is that they are able to provide only projections 

without their related confidence intervals. This is mainly due to the fact that they are able to learn highly non-linear predictions in a 

time series without the need to make any assumptions regarding statistical distributions. 

This is certainly a strength for capturing non-standard relationships, but it does not allow the analyst to express the results in terms 

of confidence bands. In order to improve the readability of the LSTM results and, consequently, help the user to be confident on the 

projection made by the network, we design a traditional econometric Seasonality ARIMA model (SARIMA). The model is an 

ARIMA(p,d,q) error model seasonally integrated with Seasonal MA(12). We maintain the seasonality effect equal to one year, that 

is 12 lags and we implement the traditional Gaussian distribution. 

The main idea is to be able to calculate the confidence intervals for the econometric models at 5% and 95% using percentiles 

method in a Monte Carlo method based on the SARIMA and comparing these extreme values with the LSTM point predictions. 

This comparison can help the analyst to understand if the simulated seasonality can be reasonable. This comparisons between 

innovative (and maybe black-box) methodologies and traditional statistical models are more and more widespread in the 

Explainable Artificial Intelligence. 
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Figure 8. CPI time series and its projection (LSTM-Method I) 

 

 

Figure 9. CPI time series and its projection (LSTM-Method II) 

 

The first step is to choose the order for our Seasonal ARIMA(p,d,q) model that is find the best p, d and q parameters. With this aim 

we generate two tensors in which we store the Akaike’s Information Criterion (AIC) and the Bayesian Information Criteria (BIC) 

estimated iteratively for all possible sets of parameters: 𝑝 = 1,… ,5 , 𝑑 = 1,… ,5 and 𝑞 = 1,… ,5. The minimum AIC and BIC is for 

a SARIMA(1,1,2). The second step is to find the estimation of the model and then perform 100,000 simulations for the next months 

(i.e.120) for computing the 5% and 95% in correspondence of these time steps. Figure 10 highlights that the empirical confidence 

intervals of the traditional econometric SARIMA model (red lines) include almost all the LSTM network predictions (blue lines). 

This information can help the analyst to understand that the Machine Learning produce reasonable predictions because its outputs 

stay inside the extreme forecasts done with a methodology for which confidence bands can be estimated. 
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This helps to reduce the black-box effect and consequently to better explain the outcomes of the deep learning methodology.  

 

Figure 10. SARIMA(1,1,2) with Seasonal lag equal to 12 percentiles and the LSTM projection 

 

7) Market Case: YYIIS pricing 

The seasonality model obviously has an impact on the derivative fair-value that is not always negligible. 

In this paragraph, we proceed with the valorization of a YYIIS swap using the two approaches described in the previous paragraphs. 

The main financial characteristics are reported in Table 3. 

The valuation date of the "In Arrears" swap is 31st December 2020, thus we can use the historical and prospective inflation data 

already computed in the previous paragraphs. Regarding the discount curve we use, according to the new benchmark standard for 

collateralized derivatives is the EUR OIS ESTR term structure. 

As a result, zero rates and discount factors used for pricing are those implied from the new market benchmark curve (see Table 4).  

 

 

 

YOY Swap Receiving Leg Paying Leg 

Leg Type Y-o-Y Inflation Fixed 

Notional 10 MM 10 MM 

Currency Euro Euro 

Index CPTFEMU Index Fixed Coupon: 2.1% 

Effective Date 31st Dec. 2010 31st Dec. 2010 

Maturity Date 31st Dec. 2030 31st Dec. 2030 

Lag 3 Month - 

Interpolation Monthly - 

Spread 0 - 

Reset Frequency Semi-Annual - 

Payment Freq. Semi-Annual Annual 

Day Count ACT/360 ACT/ACT 

Discount Curve EUR-OIS-ESTR EUR-OIS-ESTR 
 

Table 3. Year-on-Year Inflation Indexed Swap Financial Characteristics 

 

 



 

RISK MANAGEMENT MAGAZINE – Volume 16, Issue 3 – Page - 66 - 

 

 

 

Term Market Rates Zero Rates Discount Factors 

1 DY -0.583 -0.5911 1.000016 

1 WK -0.555 -0.56274 1.000108 

2 WK -0.555 -0.56277 1.000216 

1 MO -0.5245 -0.5319 1.000452 

2 MO -0.56 -0.56804 1.000919 

3 MO -0.564 -0.57224 1.001428 

4 MO -0.5685 -0.57694 1.001899 

5 MO -0.5703 -0.57892 1.00243 

6 MO -0.574 -0.58281 1.002894 

7 MO -0.5778 -0.58682 1.003414 

8 MO -0.581 -0.59023 1.003953 

9 MO -0.586 -0.59546 1.004464 

10 MO -0.5875 -0.59714 1.004986 

11 MO -0.5895 -0.59933 1.005516 

12 MO -0.592 -0.60203 1.006038 

18 MO -0.602 -0.61189 1.009195 

2 YR -0.61262 -0.61446 1.012365 

3 YR -0.60932 -0.61118 1.018504 

4 YR -0.60118 -0.60266 1.024433 

5 YR -0.58329 -0.58494 1.029695 

6 YR -0.55663 -0.55851 1.034094 

7 YR -0.5222 -0.52437 1.037402 

8 YR -0.48456 -0.48686 1.039745 

9 YR -0.44388 -0.4465 1.041054 

10 YR -0.39831 -0.40124 1.040974 

 

Table 4. EUR-OIS-ESTR Discount Curve. Reference Date: 31st December 2020. Source: Bloomberg® 

 

Using the pricing formulas derived in paragraph 2, we proceed with the estimation of the future cash-flows for the swap and then we 

go through the discounting process for obtaining the NPVs for the two legs. The difference between the two NPVs gives the price of 

the swap. In detail: 

 the discounted Cash Flows for the fixed paying leg of the swap are equal to -2,159,760.13 Euro (see Table 5). 

 the discounted Cash Flows for the inflation-indexed receiving leg of the swap using the standard seasonality approach are equal 

to +1,178,818.67 Euro (see Table 6). 

 the discounted Cash Flows for the inflation-indexed receiving leg of the swap using the deep learning architecture are equal to 

+1,231,750.60 Euro (see Table 7). 

Accrual Start Payment Date Days Notional Coupon Payment Discount Zero Rate PV 

12/31/2020 12/31/2021 365 -10000000 2.1 -209998.43 1.006032 -0.60144 -211265.24 

12/31/2021 12/30/2022 364 -10000000 2.1 -209424.66 1.012343 -0.61422 -212009.62 

12/30/2022 12/29/2023 364 -10000000 2.1 -209424.66 1.018469 -0.61115 -213292.62 

12/29/2023 12/31/2024 368 -10000000 2.1 -211152.26 1.02442 -0.60276 -216308.66 

12/31/2024 12/31/2025 365 -10000000 2.1 -209998.43 1.029709 -0.5852 -216237.26 

12/31/2025 12/31/2026 365 -10000000 2.1 -210000.00 1.034121 -0.55895 -217165.47 

12/31/2026 12/31/2027 365 -10000000 2.1 -210000.00 1.037446 -0.52497 -217863.67 

12/31/2027 12/29/2028 364 -10000000 2.1 -208854.03 1.039792 -0.48775 -217164.65 

12/29/2028 12/31/2029 367 -10000000 2.1 -211145.97 1.041122 -0.44749 -219828.70 

12/31/2029 12/31/2030 365 -10000000 2.1 -210000.00 1.041068 -0.40225 -218624.24 

 

Table 5. Fixed Payment Leg Valuation 
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Accrual Start Accrual End Days Notional Reset Date Reset Rate Reset Price Coupon Payment Discount Zero Rate PV 

12/31/2020 06/30/2021 181 10000000 03/01/2021 0.6337 104.86851 0.6337 31860.78 1.002892 -0.582367 31952.92 

06/30/2021 12/31/2021 184 10000000 09/01/2021 1.76383 105.80096 1.76383 90151.2 1.006032 -0.601438 90695.04 

12/31/2021 06/30/2022 181 10000000 03/01/2022 0.52997 106.07902 0.52997 26645.85 1.009188 -0.611429 26890.68 

06/30/2022 12/30/2022 183 10000000 09/01/2022 1.09685 106.66237 1.09685 55756.46 1.012343 -0.614222 56444.67 

12/30/2022 06/30/2023 182 10000000 03/01/2023 0.59075 106.97656 0.59075 29865.85 1.015412 -0.612777 30326.13 

06/30/2023 12/29/2023 182 10000000 09/01/2023 1.16675 107.59893 1.16675 58985.67 1.018469 -0.611149 60075.11 

12/29/2023 06/28/2024 182 10000000 03/01/2024 0.70232 107.97574 0.70233 35506.43 1.021433 -0.607088 36267.44 

06/28/2024 12/31/2024 186 10000000 09/01/2024 1.25114 108.66416 1.25114 64642.41 1.02442 -0.60276 66221 

12/31/2024 06/30/2025 181 10000000 03/01/2025 0.84101 109.11734 0.84101 42283.91 1.02709 -0.59417 43429.38 

06/30/2025 12/31/2025 184 10000000 09/01/2025 1.39773 109.88619 1.39773 71439.3 1.029709 -0.585203 73561.69 

12/31/2025 06/30/2026 181 10000000 03/01/2026 0.90813 110.38104 0.90813 45658.9 1.031968 -0.572289 47118.54 

06/30/2026 12/31/2026 184 10000000 09/01/2026 1.46395 111.19565 1.46395 74823.95 1.034121 -0.558946 77377.04 

12/31/2026 06/30/2027 181 10000000 03/01/2027 0.89757 111.69057 0.89757 45127.69 1.035863 -0.542196 46746.12 

06/30/2027 12/31/2027 184 10000000 09/01/2027 1.45352 112.50897 1.45352 74291.22 1.037446 -0.524965 77073.13 

12/31/2027 06/30/2028 182 10000000 03/01/2028 0.97434 113.05558 0.97434 49258.37 1.038719 -0.50642 51165.62 

06/30/2028 12/29/2028 182 10000000 09/01/2028 1.55144 113.93017 1.55144 78433.73 1.039792 -0.487753 81554.73 

12/29/2028 06/29/2029 182 10000000 03/01/2029 1.06202 114.53349 1.06202 53690.98 1.040562 -0.467854 55868.81 

06/29/2029 12/31/2029 185 10000000 09/01/2029 1.61278 115.46973 1.61278 82879.04 1.041122 -0.447493 86287.18 

12/31/2029 06/28/2030 179 10000000 03/01/2030 1.05645 116.06797 1.05645 52528.81 1.041221 -0.425386 54694.11 

06/28/2030 12/31/2030 186 10000000 09/01/2030 1.58155 117.00341 1.58155 81713.54 1.041068 -0.402249 85069.33 

 

Table 6. Inflation-Indexed Receiving Leg Valuation using the standard approach 

 

Accrual Start Accrual End Days Notional Reset Date Reset Rate Reset Price Coupon Payment Discount Zero Rate PV 

12/31/2020 06/30/2021 181 10000000 03/01/2021 0.28164 104.68732 0.28164 14160.14 1.002892 -0.582367 14201.09 

06/30/2021 12/31/2021 184 10000000 09/01/2021 2.11633 105.80096 2.11633 108167.9 1.006032 -0.601438 108820.38 

12/31/2021 06/30/2022 181 10000000 03/01/2022 1.12420 106.39734 1.12420 56522.2 1.009188 -0.611429 57041.53 

06/30/2022 12/30/2022 183 10000000 09/01/2022 0.49757 106.66237 0.49757 25293.1 1.012343 -0.614222 25605.29 

12/30/2022 06/30/2023 182 10000000 03/01/2023 0.71823 107.04610 0.71823 36310.58 1.015412 -0.612777 36870.20 

06/30/2023 12/29/2023 182 10000000 09/01/2023 1.03022 107.59893 1.03022 52083.28 1.018469 -0.611149 53045.21 

12/29/2023 06/28/2024 182 10000000 03/01/2024 -0.95952 107.08395 -0.95952 -48509.1 1.021433 -0.607088 0.00 

06/28/2024 12/31/2024 186 10000000 09/01/2024 2.92979 108.66416 2.92979 151372.4 1.02442 -0.60276 155068.92 

12/31/2024 06/30/2025 181 10000000 03/01/2025 0.91998 109.16515 0.91998 46254.4 1.02709 -0.59417 47507.44 

06/30/2025 12/31/2025 184 10000000 09/01/2025 1.31665 109.88619 1.31665 67295.66 1.029709 -0.585203 69294.94 

12/31/2025 06/30/2026 181 10000000 03/01/2026 0.65143 110.24469 0.65143 32752.3 1.031968 -0.572289 33799.33 

06/30/2026 12/31/2026 184 10000000 09/01/2026 1.72312 111.19862 1.72312 88070.79 1.034121 -0.558946 91075.85 

12/31/2026 06/30/2027 181 10000000 03/01/2027 0.66842 111.57088 0.66842 33606.8 1.035863 -0.542196 34812.04 

06/30/2027 12/31/2027 184 10000000 09/01/2027 1.67458 112.50897 1.67458 85589.4 1.037446 -0.524965 88794.38 

12/31/2027 06/30/2028 182 10000000 03/01/2028 1.19056 113.18071 1.19056 60189.29 1.038719 -0.50642 62519.76 

06/30/2028 12/29/2028 182 10000000 09/01/2028 1.31999 113.93017 1.31999 66733.04 1.039792 -0.487753 69388.48 

12/29/2028 06/29/2029 182 10000000 03/01/2029 0.97715 114.48816 0.97715 49400.22 1.040562 -0.467854 51403.99 

06/29/2029 12/31/2029 185 10000000 09/01/2029 1.70740 115.46973 1.70740 87741.21 1.041122 -0.447493 91349.31 

12/31/2029 06/28/2030 179 10000000 03/01/2030 0.39262 115.69663 0.39262 19521.73 1.041221 -0.425386 20326.44 

06/28/2030 12/31/2030 186 10000000 09/01/2030 2.24632 117.00341 2.24632 116059.7 1.041068 -0.402249 120826.04 

 
 

Table 7. Inflation-Indexed Receiving Leg Valuation using the LSTM approach 
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The gap between the values from the two pricing methodologies is equal to -52,931.93 and, consequently, the percentage error, 

measured as the ratio between the absolute evaluation discrepancy and the notional of the derivative, is higher than 0.529%. 

 

It is worth noting that the simulated future CPIs implied by the rates of the listed ZCIIS are exactly the same independently of the 

implemented seasonality method (i.e. standard or LSTM-Method 2). These values are highlighted in bold in Tables 6 and 7. 

 

LSTM-Method I) provides a result very close to the standard methodology: the NPV of the  inflation-indexed receiving leg  is 

1,175,808.67 Euro. 

 

8) Conclusions 

This study shows how a Deep Learning methodology can be usefully implemented in a pricing framework, aiming at determining 

the fair value of derivatives linked to the inflation index. 

The Long Short-Term Memory Network allows to identify the effect of seasonality in a more reliable way compared to traditional 

methodologies. In fact, the proposed technique is able to simulate the future values of the time series by applying the described 

rigorous statistical and econometric tests, reasonably guaranteeing the reliability of the forecasts. 

On the contrary, the traditional approach, based on the estimation of the historical normalized residuals, does not consider these 

important tests and it is not able to capture highly nonlinear relationships as a LSTM network does. It is particularly interesting 

considering how artificial intelligence paradigms can be integrated with traditional pricing methodologies in the field of quantitative 

finance. 

In summary, the study shows that seasonality has larger impacts than previously expected on the Inflation-Indexed Swaps valuation, 

especially when counterparties exchange a fixed interest rate compared to a floating rate. 

The proposed methodology also combines market elements with a machine learning approach, making the method more dynamic, 

despite inflation rates being estimated only periodically. 

In addition, thanks to this dynamic approach, the model proposed allows financial institutions to better estimate future cash flows 

that counterparties have to exchange over the years, so to make the risk management process more accurate compared to more 

traditional approaches. 

Despite the results being interesting, this research represents only a preliminary study in this area and further analyses to test and to 

improve the model are thus required. 

Possible future researches could aim either at determining which factors impact the most on the variability of the results, or at seeing 

the implications of such methodology when applied to derivative contracts, written on underlyings (such as commodity and energy 

derivatives) where the seasonality effect is of fundamental importance. 
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