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The Margin of Conservatism (MoC) in the IRB approach: defining and measuring the 

general estimation error 
 
di1 Franco Varetto (Politecnico di Torino) e Silvio Cuneo (Intesa San Paolo) 

 

Abstract (English) 
Since the Basel 2 Accord, the Regulators have raised the issue of errors arising in the internal model estimation process, 

calling for margins of conservatism to cover possible underestimation in capital. However, this issue has been dealt with just a 

few general statements into to the primary regulations, until the EBA has devoted a material share of its 2017 Guidelines on 

model estimation to build up a framework to define, classify and quantify the Margin of Conservatism (MoC).  

In this article, we surveyed the regulatory requirements and their methodological foundations, coming to propose to a method 

for MoC quantification based on a simple k-sigma formula. 

Both the components of the method (i.e. quantifying the standard deviation of the parameter estimator and setting the k factor) 

are analysed from the methodological and the operational point of view: 

 For sigma, some alternative approaches are put forward, as well as an approach to models designed as the 

aggregation of multiple components; 

 For k, whose calibration is crucial to avoid (or at least to limit) double counting of risks and capital requirements, a 

closed-formula and a Monte Carlo approach are discussed, and the latter is elaborated in depth with a final calibration 

proposal. 

The obtained results are used to perform an impact analysis on RWAs according to different calibration scenarios for k and 

sigma. The main outcome is that MoC, if not properly calibrated, can be very burdensome for small portfolios, and especially 

for low default portfolios. 

Finally, some operational issues are explored concerning the implementation of the MoCs on “real life” portfolios, where 

different segmentations across risk components may involve technical problems, and the extension of MoCs to defaulted asset 

RWAs computation. Also, the lifecycle of MoCs should follow the one of the related models, thus implying a synchronization 

in the lifecycle of the models for all risk components for each portfolio segment. 

 

Abstract (Italiano) 
Fin dall’Accordo di Basilea 2, i Regulators hanno posto il problema degli errori derivanti dal processo di stima dei modelli 

interni, richiedendo margini di prudenzialità per coprire possibili sottostime del capitale. Tuttavia, il tema è stato affrontato 

soltanto in termini generali nella normativa primaria, finché l’EBA ha dedicato una significativa porzione delle sue Linee 

Guida per la stima dei modelli del 2017, che stabiliscono un quadro per definire, classificare e quantificare il Margin of 

Conservatism (MoC).  

In questo articolo ripercorriamo i requisiti regolamentari e i loro fondamenti metodologici, pervenendo ad una proposta per la 

quantificazione del MoC basata sulla semplice formula k-sigma. 

Entrambe le componenti del metodo (ovvero la quantificazione della deviazione standard dello stimatore e la calibrazione del 

fattore k) sono analizzate dal punto di vista metodologico e operativo: 

 Relativamente a sigma, vengono proposti alcuni approcci ed esaminato un metodo specifico per i modelli basati 

sull’aggregazioni di componenti; 

 Per quanto riguarda il fattore k, la cui calibrazione è cruciale per evitare (o quantomeno limitare) il “double counting” 

di rischi e requisiti, vengono discussi un approccio a formula chiusa e uno basato sul metodo Monte Carlo; 

quest’ultimo è elaborato in dettaglio con una proposta finale per la calibrazione di k. 

I risultati ottenuti sono stati utilizzati per effettuare un’analisi di impatto sui RWA secondo differenti scenari di calibrazione 

per k e sigma. L’evidenza principale è che il MoC, qualora non calibrato in modo appropriato, può risultare estremamente 

penalizzante per portafogli piccoli, e in particolare per i “low default portfolios”. 

Da ultimo, sono stati analizzati alcuni problemi operativi riguardanti l’implementazione del MoC su portafogli reali, dove 

segmentazioni diverse tra i fattori di rischio possono comportare problemi tecnici, e l’estensione dei MoC al calcolo dei RWA 

per le esposizioni deteriorate. Infine, il ciclo di vita dei MoC dovrebbe seguire quello dei relativi modelli, implicando la 

necessità di una sincronizzazione tra tutti i modelli per i diversi fattori di rischio di ciascun segmento del portafoglio.  

 

1 Foreword 
Since the Basel 2 Accord, the Regulators have raised the issue of errors arising in the internal model estimation process, 

calling for margins of conservatism to cover possible underestimation in capital. 

However, this issue has been dealt with just a few general statements into to the primary regulations, namely the 2013 Capital 

Requirement Directive and the EU Regulation 575/2013 for European Union. 

More recently, the EBA has devoted a material share of its 2017 Guidelines on model estimation to build up a framework to 

define, classify and quantify the Margin of Conservatism (MoC). Furthermore, regulation has been brought out on Model 

Risk, which appears to have close relations with MoCs, though still not thoroughly elaborated. 

To discuss the issue and put forward methodological proposals for the application of regulatory requirements on Margin of 

Conservatism in banks models, AIFIRM set up a dedicated Commission, coordinated by Silvio Cuneo (Intesa Sanpaolo) and 

Franco Varetto (Politecnico of Torino). 

                                                           
1
 L’articolo è stato inoltre sottoposto a doppio referaggio anonimo, pervenuto in data 31/01/2011 e accettato il 19/03/2019. 
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This article summarizes the main findings of the Commission works, which can be read in detail into the AIFIRM Position 

Paper n. 13. (cfr. http://www.aifirm.it/position-paper-2/) 

 

2 The Margin of Conservatism in the Regulation 
The story begins with the Basel 2 Accord, which at par. 451 states:  

“In general, estimates of PDs, LGDs, and EADs are likely to involve unpredictable errors. In order to avoid over-optimism, a 

bank must add to its estimates a margin of conservatism that is related to the likely range of errors. Where methods and data 

are less satisfactory and the likely range of errors is larger, the margin of conservatism must be larger”. 

The risk of introducing undesired and excessive capital burdens to the bank is quite concrete. This seemed to be already 

apparent to Basel Regulators since the beginning of the Accord: in the 2005 BCBS Paper “An Explanatory Note on the Basel 

II IRB Risk Weight Functions” (see [29]), one can read at par. 5.1: “The high confidence level was also chosen to protect 

against estimation errors, that might inevitably occur from banks’ internal PD, LGD and EAD estimation, as well as other 

model uncertainties”.  

 

However, the issue has been dealt with just a few general statements into to the primary regulations, namely the 2013 Capital 

Requirement Directive and the EU Regulation 575/2013 for European Union. 

 

These high-level principles have been interpreted by the banking industry and national supervisors in various ways, leading to 

a wide variety of practices. Hence, in the context of its project to harmonize industry practices and reduce RWA variability, 

the EBA has devoted a material share of its 2018 “Guidelines on PD estimation, LGD estimation and the treatment of 

defaulted exposures” to build up a framework to define (EBA GLs), classify and quantify the Margin of Conservatism (MoC).  

The EBA GLs introduces the following taxonomy (par. 42): 

 Category A: MoC related to data and methodological deficiencies …; 

 Category B: MoC related to relevant changes to underwriting standards, risk appetite, collection and recovery 

policies …; 

 Category C: the general estimation error. 

 

Here we are focusing only on the last MoC category
2
, whose requirements can be summarized as follows: 

 It should reflect the dispersion of the distribution of the statistical estimator (par. 43) 

 It should be quantified at least for every calibration segment (par. 43) 

 It must always be greater than zero (par. 47)  

 (together with the other MoCs) It should not distort with excessive adjustments the estimates of the risk parameters 

and the resulting own funds requirements (par. 48). 

 

It is also convenient mentioning what the GLs say about the aggregation of MoCs at Chapter 2 Background and Rationale:  

“…for the purpose of harmonisation and in order not to impose over sophistication, it has been decided to require the 

aggregation of MoC between the categories based on a simple sum. However, different aggregation techniques may be used 

within each of the categories”. 

Though this is related to the different MoC types, we notice that the same issue must be coped with for the aggregation of the 

MoCs on the different risk components. Specifically, general estimation errors can be reasonably assumed independent on one 

another while separately adjusting each risk parameter estimator for its own MoC involves an implicit assumption of 

correlation between errors. MoC aggregation should hence be designed in a way not produce “excessive adjustments”, as 

stated before. In this regard, it worth noticing that the EBA GLs themselves clearly states in par. 43. to “[…] quantify MoC for 

the identified deficiencies referred to in paragraphs 36 and 37 [i.e. categories A and B], to the extent not covered by the 

general estimation error, […]”, thus putting attention if the generalized estimation error, in the way in which is quantified, 

might already factorize the additional buffer of conservatism stemming from a category A or B deficiency.  

 

A further regulatory reference, still published as a consultative document in September 2018, is the “ECB guide to internal 

models, Risk type specific chapters”. The MoC paragraph, specifically concerning MoC of type C, extends to CCFs the 

content of the EBA GLs on PD and LGD estimation. Furthermore, for PDs it specifies that the MoC should “account for 

statistical uncertainty/sampling error affecting the LRA estimate at grade level stemming from the variability of each year’s 

default rate and from the period considered…”.  

This raises some concerns: 

 Estimating the MoC at the grade level alters the shape of the discriminant function. An inversion of the curve 

(leading to a reduction of predicting power) can even happen if the MoC is inversely proportional to PD in some 

segment of the curve, as it might easily be the case if the MoC is proportional to the sample size. Moreover, the 

estimation becomes rather arbitrarily dependent on the number of grade levels of the model. For that reasons, we 

believe that this provision should be interpreted in the sense that the MoC must be calculated at the model level and 

then allocated to each grade in a way that preserves the predicting power of the model; 

 Considering separately the default rate of each year can confuse the variability of the default rate time series with that 

of its estimator: only the latter should contribute to defining the type C MoC. We believe that this statement should 

                                                           
2
 In what follows we will refer shortly to MoC as the type C MoC. 
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be interpreted as a recommendation to consider the whole time series in order to evaluate the variability of the 

estimation error.  

Both these issues are further explored in the methodological analysis and in the proposals illustrated forward below. 

 

Finally, Regulation has been brought out on Model Risk, which appears to have close relations with MoCs, though still not 

thoroughly elaborated. A specific issue relates to the definition of a capital buffer to cover model risk: if such a capital buffer 

is deemed necessary, a mapping of prudential elements applied to face specific regulatory request should be done in order to 

avoid any double counting on economic capital measures with respect to MoCs (and generally speaking add-ons) already 

included in Pillar I measures. Probably, most part of these prudential measures are considered also in the economic capital 

ones, which justifies the fact of not applying a model risk capital buffer to Pillar I risks that are also applied in Pillar II 

(ICAAP). Banks should calculate an economic capital to face model risk only if no “general estimation error” MoC is 

included in Pillar II. 

 

3 The methodological framework 
In order to define a method to calculate the MoC in compliance with the regulatory requirements, we started surveying the 

regulatory requirements and the methodological foundations of the MoC related to the general estimation error.  

After recalling the fundamental difference between the variability of the observed variable and that of its estimator, several 

approaches have been examined, ranging from parametric and non-parametric inferential statistics to Bayesian approach. 

We refer to the position paper for the full methodological review. 

 

It comes out that there is no simple way to address the issue consistently with methodological soundness and meaningfulness 

of the results. 

The difficulties arise already at the level of a single risk parameter (PD, LGD and CCF), but become overwhelming when we 

tackle the issue of the aggregation of MoCs on different risk parameters. 

We thus formulate a set of general principles that should be followed to comply with regulatory requirement while avoiding 

excessive and unjustified burdens: 

 

1. In order to define the size of the adjustment, it should be kept in mind that the confidence interval of Basel 

formulas is fixed at 99.9% for PD parameter in order to “protect against estimation errors”: category C MoC 

determines a further implicit increase of this confidence level, which is already quite high.  

2. Category C MoC is to be computed at calibration segment level rather than rating grade level (once computed at 

calibration segment level, an application at grade level is always possible). Two main reasons are motivating the 

choice: MoC concerns capital quantification, thus it should affect calibration which is the final layer in the 

parameters determination; furthermore, if applied at rating grade level, it could introduce distortions in the 

measures: for example, it can break the monotonicity of a PD scale, thus reducing the predictive power of the 

model (the same is true for the other risk parameters). 

3. Consequently, the granularity should follow the calibration, generally coinciding with (regulatory) model level. 

The rationale is to avoid an excessive granularity, potentially leading to distortions.  

4. In the case of models built through a “component” approach, the potential overestimate of the error due to the 

aggregation of independent measures must be limited. 

5. A similar consideration holds for the aggregation in the Expected Loss measure of MoCs calculated separately 

for PDs, LGDs and CCFs: given the correlations among the three MoC measures, a cap on the total level of the 

add-on should be imposed and then single parameters levels should be consequently adjusted. 

6. The estimate error measurement must be (inversely) proportional to total sample dimension, while time 

dimension per se should not be relevant. 

 

We propose then a simple method to calculate the MoC as an adjustment to each risk parameter (PD, LGD and CCF) resulting 

from the product of a factor (k) times the standard deviation (sigma) of the parameter estimator:  

 

MoC = K*sigma 

 

In what follows, we discuss how to define and compute the sigma parameter and how to calibrate the k parameter in a way 

that is consistent with the principles set above.  

 

4 The k-sigma approach: estimation of sigma 
In order to define sigma, it must be recalled that we have to measure the “dispersion of the distribution of the statistical 

estimator”. Hence, sigma should measure the volatility of the statistical estimator. Even if it may appear trivial, it is important 

to never confuse the variability of the population with the one of the estimator. This confusion comes even easier when talking 

about the LGD and CCF. 

 

We have identified two alternative methods, one based on the calibration sample volatility and the second one based on the 

“within” variance of the estimates. The table below summarizes the main features of the proposed methods. 
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Method 1 Method 2 

PD 𝜎 = √
𝑝 ∙ (1 − 𝑝)

𝑛
 

𝜎 =  
√𝑠𝑊

2

√𝑁
=

√∑ 𝑁𝑗 ∙𝐽
𝑗=1

𝑁𝑗

(𝑁𝑗 − 1) ∙ (𝑃𝐷𝑗 − 𝐷𝑅𝑗)2

𝑁
 

LGD/EAD (CCF) Bootstrapping 

 =
√𝑠𝑤

2

√𝑁
=

√∑
𝑁𝑗

𝑁
1

(𝑁𝑗 − 1)
∑(𝑥𝑖𝑗 − 𝑥̂𝑗)

2𝐽
𝑗=1

√𝑁
 

Legend of symbols 

 = standard deviation 

p = probability of default 

n = sample size 

 = standard deviation 

sW = within standard deviation 

PDj = probability assigned to cluster j 

DRj = observed default rate of cluster j 

xij = i-th observation of cluster j 

𝑥̂𝑗 = estimator for cluster j 

Nj = size of cluster j 

n = sample size 

Rationale 
Variance of the binomial random variable for PD, numerical 

approximation for LGD and EAD 

Decomposition between-within of estimation error variance and 

utilization of the within component 

Pros and cons 

• Direct measurement of the unavoidable estimation error, 

inversely proportional to the sample size 

• Extremely penalizing for low default portfolios 

• Sigma inversely proportional to both the sample size and 

discriminant power  risk sensitive approach which provides 

correct incentives to the estimation process  

• The MoC can theoretically (in case of “perfect” model) result 

equal to zero 

 

It must be stressed again that sigma must be computed at the level of calibration sample and not at each rating grade level, in 

order to avoid several undesired consequences: arbitrariness in defining the master scale (especially the number of rating 

grades), disproportionate impacts on low populated rating grades and finally the risk of altering the rank order of the rating 

and diminishing its predictive power. However, it will be always possible to allocate the resulting MoC to each rating grade, 

for example via a Bayesian approach, rather than simply adding it to each grade of the scale, depending on the model design 

that the bank has adopted. 

In summary, the two methods can be compared on several angles: 

 On the methodological standpoint, both methods appear to be compliant to the requirement to assess the “dispersion 

of the distribution of the statistical estimator”. This is a feature of the sample size and distribution and cannot be 

eliminated by the estimation model. The main difference is that method 2 admits theoretically a zero result for sigma, 

but only in the unrealistic case of a “perfect” model. 

 From a practical point of view, method 2 has a number of positive features: it is risk sensitive, in the sense that a 

better model will have a lower sigma and consequently a lower MoC, which seems to be sound; it is computed at the 

rating grade/grid cell level, though recombined at the calibration level (thus resulting suitable in a context of 

calibration by grade or pool whereas Method 1 results more immediately applicable in presence of direct calibration 

at segment level); being sensitive to the discriminant power (in addition to sample numerosity), it can mitigate 

disproportionate results in low default portfolios. 

Finally, the paper also explores an alternative approach, based on bootstrapping and the computation of semi-variance, that is 

the computation of variance only on “positive” estimation errors. 

 

The case of model components 

 

A further issue that should be treated is the calculation of sigma for models whose model design envisages the aggregation of 

model components. Instead of proposing a general approach, we explored a simple but common case: a LGD model based on 

two components, a Loss Given Loss and a Cure Rate: 

𝐿𝐺𝐷 = 𝑑 ∙ 𝐿𝐺𝐿 + (1 − 𝑑) ∙ 𝐿𝐺𝐶 

where LGL is the loss incurred in the workout procedure, LGC is the loss incurred in case of cure (returning to performing 

status) and 1-d is the cure rate, or d is the probability to enter the workout procedure (“danger rate”). 

If we assume for simplicity that LGC0 and neither loss nor recoveries are incurred in the pre-workout phase, our model 

reduces to: 

𝐿𝐺𝐷 = 𝑑 ∙ 𝐿𝐺𝐿 

Then, by assuming that the d and LGL estimators are independent variables, it can be shown that sigma can be computed 

according to the formula:  

𝜎𝐿𝐺𝐷 = √𝜎𝑑
2 ∙ 𝜎𝐿𝐺𝐿

2 + 𝑑2 ∙ 𝜎𝐿𝐺𝐿
2 + 𝐿𝐺𝐿2 ∙ 𝜎𝑑

2 

Where both d LGL can be obtained with either method 1 or method 2 described above. 
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To obtain this result, we made a couple of assumptions that deserve to be discussed. 

Starting with independence between the estimators of model component, we note that this assumption is sound, since it is not 

related to the two variables, which may actually be correlated, but to their estimators: there is no reason why the errors made 

in the estimation of cure rate should be correlated with those made in the estimation of loss given loss.  

On the other hand, it can be shown that a simple aggregation rule, consisting of computing separately the MoCs on cure rate 

and LGL and calculating the LGD with MoC as the product of the two post MoC components, embeds the implicit assumption 

of perfect correlation between cure rate and LGL estimation errors and leads to excess of conservatism.  

 

The second one is more a simplification than an assumption, consisting in reducing the model to only two components. 

Actually, the extension to more model components is feasible though a closed formula for the variance of the non-linear 

aggregation of several components is not generally available and then the complexity can explode. We recommend striking 

the balance between theoretical perfection and simplicity, by limiting the computation of sigma only to the components that 

judgementally can be deemed as more relevant in the whole model. 

 

Empirical results 

 

The proposed methods have been tested on sample portfolios of a large bank. 

Table 1 shows that the two methods yield very similar results for LGD and CCF, while Method 1 is far more conservative for 

PD and especially burdensome for low default portfolios. Obviously, these results could change over the time, likely in the 

downward direction, because of larger sample size (as long as time series expand) and more discriminant models. 

 

Table 1: sigma (expressed in share of the average value of estimate) 

 Sigma PD Sigma LGD* Sigma CCF 

 Method 1 Method 2 Method 1 Method 2 Method 1 Method 2 

LDPs 4-11% 2% 4-10% 3-10% N/A N/A 

Corporate 0.5% 0.2% 0.5% 0.5% 6% 5% 

Retail 0.2-0.4% 0.2-0.4% 0.1-0.9% 0.1-0.9% 0.6-1.2% 0.6-1.2% 
* computed only on workout exposures, can be regarded as a loss given loss 

NB: floors to 1 bp have been applied on sigma absolute values 

 

Table 2 finally reports the results obtained for model component LGD, where for sake of simplicity we only used Method 1 

for the danger rate sigma (note also that sigma LGL are the values taken from LGD in table 1). 

 

Table 2: sigma for model component LGD (expressed in share of the average value of estimate) 

 Sigma LGL Sigma d Sigma LGD 

 Method 1 Method 2 Method 1 Method 1/1 Method 2/1 

LDPs 4-10% 3-10% 1,5-2,5% 4-10% 4-10% 

Corporate 0.5% 0.5% 1.50% 1.50% 1.50% 

Retail 0.1-0.9% 0.1-0.9% 0.2-0.5% 0.2-1% 0.2-1% 

 

 

5 The k-sigma approach: calibration of k 
The calibration of K coefficient, which identifies the upper bound of the confidence interval adopted for the general estimation 

error, is a crucial issue of the entire procedure for the MoC quantification. It is possible to evaluate various methodological 

alternatives but, in this paper, a scheme seemingly rationale and in general straightforward is privileged.   

The starting point, as underlined above, derives from the choices adopted by the Basel Committee about the regulatory 

formula for the incorporation of prudence within internal rating systems parameters: 

a) The PD confidence interval set at 99.9% “was also chosen to protect against estimation errors, that might inevitably 

occur from banks’ internal PD, LGD and EAD estimation, as well as other model uncertainties. The confidence level 

is included into the Basel risk weight formulas and … used to provide the appropriately conservative value of the 

single risk factor” (see [29]); 

b) The prudence perspective must involve also the LGD and EAD evaluation. “A bank must estimate an LGD for each 

facility that aims to reflect economic downturn conditions where necessary to capture the relevant risk. … banks may 

make reference to the average of loss severities observed during periods of high credit losses, forecasts based on 

appropriately conservative assumption, or other similar methods” (see ref. 235 of [30]). “… for exposures for which 

EAD estimates are volatile over the economic cycle, the bank must use EAD estimates that are appropriate for 

economic downturn, if these are more conservative than the long-run average” (see ref. 42 of [30]). 

 

While for PD parameter a specific regulatory formula exists, in which the prudence is explicitly incorporated through a 

confidence interval, for LGD parameter, as well as for EAD, without specific regulatory formulas, the prudence is defined in 

terms of downturn adjustments with respect to the long run weighted averages of the same variables.   
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In this context, it appears evident that the MoC inclusion within PD, LGD and EAD estimates inevitably determines an 

increase in the overall confidence interval for the computation of the capital requirement. Nevertheless, as cited above, the 

99.9% threshold for PD and the references to downturn scenarios for LGD and EAD appear to have been chosen by the 

Committee to indeed include uncertainties and errors within the models and the relative estimates of parameters. Apparently, 

it turns out to be a duplication, at least partial, of corrections for prudence. The underlying idea developed by the AIFIRM 

working group considers the MoC inclusion as making explicit a share of uncertainties and protections against errors already 

implicitly incorporated within regulatory formulas. 

 

As specified in the general principles defined above, the adoption of MoC for general estimation error should not be a 

surreptitious tool to ask banks for an increase of their regulatory capital requirements. 

Based on this principle, the approach adopted in the paper for the k calibration has the goal to reduce as much as possible the 

double counting of regulatory cautions, nonetheless recognizing that, with the aim of not altering the regulatory formulas, this 

double counting cannot be entirely eliminated. In what follows we outline the general features of the approach; for further 

details, we refer to the Position Paper. 

 

By referring, for sake of simplicity, to Corporate segment, the regulatory formula can be expressed as: 

 

Capital requirement = 𝐸𝐴𝐷𝑑 ∙ {Φ [
Φ−1(𝑃𝐷) + √𝜌Φ−1(0.999)

√1 − 𝜌
] ∙ 𝐿𝐺𝐷𝑑 − 𝑃𝐷 ∙ 𝐿𝐺𝐷𝑑} ∙ 𝑀 

 

where 𝐸𝐴𝐷𝑑 = EADdownturn,  = normal probability distribution,  = asset correlation, 𝐿𝐺𝐷𝑑 = LGDdownturn, M = 

maturity adjustment. 

 

By ignoring the maturity adjustment and working on the Total Loss (TL, loss at the quantile of the desired confidence interval 

corresponding to the sum of the expected loss and the requirement for the unexpected one), defined as the product of EAD, 

LGD and PD adjusted for prudence, it is possible to obtain the stressed total loss before the deduction for the expected loss: 

 

TL(R) = 𝐸𝐴𝐷𝑑 ∙ {Φ [
Φ−1(𝑃𝐷) + √𝜌 ∙ Φ−1(0.999)

√1 − 𝜌
] ∙ 𝐿𝐺𝐷𝑑} 

 

where TL(R) represents the Total Loss of Basel regulation.  

 

If we want to avoid the double counting of regulatory cautions, the TL inclusive of MoC should be written as: 

 

TL(MoC) = (EAD + 𝑘𝐸𝜎𝐸𝐴𝐷) ∙ {Φ [
Φ−1(𝑃𝐷 + 𝑘𝑃𝜎𝑃𝐷) + √𝜌|𝑘𝑃𝜎𝑃𝐷

∙ Φ−1(𝐹)

√1 − 𝜌|𝑘𝑃𝜎𝑃𝐷

] ∙ (𝐿𝐺𝐷 + 𝑘𝐿𝜎𝐿𝐺𝐷)} 

 

where EAD and LGD variables are computed before downturn adjustment and the macro factor (F) is left free to assume 

values lower than the threshold of the 99.9% regulatory confidence interval; the asset correlation, finally, takes into account 

the MoC impact on PD. Both F and the three k parameters have standard normal distribution. To avoid double counting, the 

value assumed by TL (MoC) in the 99.9% probability scenario [TL(MoC)|0.999] should not be higher than TL(R). 

 

Therefore, the comparison introduced for the k calibration is between TL(R) and TL(MoC)|0.999. 

To this aim two different paths can be followed: the first alternative concerns a solution in closed form (or partially closed), 

while the second one is based on a numerical solution through the Monte Carlo simulation. 

The latter allows for more degrees of freedom compared to the solution in closed form, whose quality entirely depends on the 

goodness of the fit (in the tail) of the theoretical distribution applied to the effective one of TL(MoC). Thus, we summarize 

here only the Monte Carlo simulation method, referring to the Position Paper for the full discussion of both approaches. 

 

We organized the Monte Carlo simulation as follows: 

1) Two million random values with an underlying Uniform distribution are generated with a repetition for n run (n 

must be sufficiently high to guarantee stable results, in our case we use 2.000).  The inverse of the normal standard 

distribution at 99.9 percentile is used as a cap for each simulated macroeconomic factor (the regulatory stressed 

macro scenario), thus Φ−1(0.999) = 3.09023 

2) With the same approach, three i.i.d. normal standard random variables are generated independent from the macro 

factor. They are marked as kE, kL and kP 

3) Since the Regulation foresees that MoC should always be positive, the extraction of three normal standard random 

variables can be constrained to assume only positive values of k. This goal can be achieved either by adopting the 

absolute value or by generating a normal standard distribution truncated on 0, which is the preferred option in the 

process here described  
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4) Starting from the simulated scenarios of the four random variables, the TL(MoC) distribution is computed, from 

which it is possible to derive the 99.9
th

 percentile. Since this percentile is very much inside the tail of the 

distribution, it is essential that the number of simulated scenarios is remarkable in order to fill the tail with a 

sufficient number of values and to stabilise the percentile value 

5) After having obtained the 99.9
th

 percentile of TL(MoC), the process continues by finding the single k value that, 

correspondent to the macro factor (F) above obtained, substituted to kE, kL and kP and applied to the original PD, 

LGD and CCF values, maintains unchanged the value obtained of TL(MoC)|0.999.  

 

In the following table we report, for each regulatory segment, the average k for the 2.000 runs of the process above described: 

 

Table 3: average of k 

 

*Depending on the analysed portfolio 

 

 

 

 

Now, since the regulatory formula should not be altered, the k value above obtained must be inserted within the computation 

of TL(R) corrected for MoC: 

 

TL(R + MoC) = (EAD𝑑 + 𝑘𝜎𝐸𝐴𝐷) ∙ {Φ [
Φ−1(𝑃𝐷 +  𝑘𝜎𝑃𝐷) + √𝜌|𝑘𝜎𝑃𝐷

∙ Φ−1(0.999)

√1 − 𝜌|𝑘𝜎𝑃𝐷

] ∙ (𝐿𝐺𝐷𝑑 + 𝑘𝜎𝐿𝐺𝐷)} 

 

The result, including the regulatory Macro factor and the Downturn adjusted LGD and EAD, is indeed higher than the TL(R) 

previously computed; the magnitude of the difference is quantified by generating a Macro factor distribution of 2 Million 

scenarios whose 99.9
th 

percentile corresponds exactly to the regulatory one and consequently to the regulatory TL. By 

mapping the value of TL(R + MoC) on this distribution it is possible to derive the equivalent percentile reached by the MoC 

introduction combined with the Macro factor and the Downturn adjustments. Results are reported in detail in table 4, always 

computed as the average of the different runs and differentiated by regulatory segment: the differences with 0.9990 represent 

the impact of the double counting introduced by MoC. 

 

Table 4: equivalent percentile of TL(R + MoC) on TL(R) 

LDPs Corporate Retail 

99.91-99.93 99.91 99.90-99.91 

 

 

6 Summary of results and final remarks 
In the previous paragraphs, we reported both methodologies and results obtained on realistic sample portfolios.  

Given these ingredients, the calculation of MoC=k*sigma is obviously trivial. In what follows we report the impact analysis 

on performing exposures RWAs of the results obtained, using the sigma computed according to method 2 and assuming k=0.8 

as per our main finding. For the purpose of sensitivity analysis, we also show the impacts with k=1, to be interpreted as an 

upper bound of the parameter in case of extremely conservative choice. 

Table 5 shows that, as expected, the impacts are very burdensome for low default portfolios and manageable for retail. 

Corporate lies in the middle and, considering that it is for most bank the largest portfolio, it is likely to be representative of the 

total impact.  

Taking also into account that we have chosen the less penalizing method for sigma, we conclude that a calibration of 0.8 for k 

is already quite punishing and lower values could be chosen, at least for low default portfolios. We recall once again that k has 

been calibrated assuming that estimation errors are always “on the wrong side”, and that is actually altering the 99.9% level of 

confidence stated by the Regulation. 

 

Table 5: RWA impacts of MoC-C on an Italian large bank performing portfolio 

 
Delta RWA% 

 
k=0.8 k=1 

LDPs  3-8% 4-10% 

Corporate 1.5% 2% 

Retail 0.3-0.9% 0,3-1.1% 

Segment Average 

Low Default Portfolios 0.71-0.91* 

Corporate 0.81 

Retail 0.81-0.82* 
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Before going to the conclusions, we want to address some operational issues. 

First, we have worked under the implicit assumption that the level of application of MoC is the model segment and this 

coincides for all the risk components. 

Nevertheless, it is easy to see that it is not the general situation. Take for example the case of a bank estimating PD for 

individuals at counterpart level, while LGD models are differentiated among Mortgage and Other Individuals (and EAD 

models possibly following a further segmentation): following the approaches described above, we should calibrate at least two 

different k, one for Mortgage and one for Other Individuals (ignoring EAD for sake of simplicity); but when we must apply 

the MoC to PD, we need to have a single k value.  

Since we do not have a methodological solution for this issue, we can define a practical rule of aggregation, such as taking the 

average of obtained k, or conservatively the maximum of the two. 

 

Another issue relates to application of MoC framework to the Defaulted Asset LGD and defaulted exposures RWAs. 

Regulation prescribes that RWAs on defaulted exposures must stem from the estimate of the increase of loss rate caused by 

possible additional unexpected losses during the recovery period, which should be broken down into three fundamental 

components: the downturn conditions component calibrated on the downturn adjustment to the long-run average LGD, any 

component covering for potential additional unexpected losses during the recovery period and the MoC component where the 

latter encompasses the three categories A, B and, above all, C.  

The regulatory requests on defaulted assets clearly increase the importance of the MoC quantification since all the three 

categories defined by the EBA must be part only of the LGD in-default and not of the ELBE. Therefore, together with the 

Downturn, they characterize the unexpected loss component which, multiplied by 12.5 times the EAD, determine the RWA 

figures. 

The Method 2 approach (“within variance”) presented for the sigma definition on LGD (the unique risk parameter significant 

for defaulted assets valuation) can be applicable as well to defaulted exposures where a further issue can be represented by the 

granularity introduced by the reference date LGD observation (i.e. the differentiation of the risk parameter by the time spent in 

default). In fact, the regulatory requirements for defaulted assets LGD estimation underline the need to analyse the LGD by 

time in-default and recoveries realised so far, determining at least a further axis of analysis with respect to Performing LGD. 

The greater granularity together with the increase of the number of observations (i.e. the same facility is repeated by the years 

spent in default) cause a different result in terms of sigma from the Performing LGD estimation. More problems concern the 

application of Method 1 (bootstrapping), unless a constraint is imposed for the facility extraction on the combination of risk 

drivers (the time spent in default causes significant differences in LGD outcomes). 

For the default statuses before the litigation process, the same methodological issues underlined for model components 

approach on Performing LGD can be extended. On the other side, given the framework introduced for the k calibration and the 

impossibility to replicate it on the formula for defaulted exposures, the proposal is to adopt the same k obtained for performing 

exposures of the same calibration segment under evaluation.  

Again, the risk of imposing excessive and undue burdens to banks must be carefully considered in the calibration of 

parameters; the request to apply MoC only to the LGD in-default is an additional source of prudence with respect to the 

Downturn component which originally represented the add-on for unexpected loss.  

 

A further operational issue to tackle is the lifecycle of our type C MoC. Clearly the sigma depends on the models and their 

development samples, thus they should be recomputed every time the model is updated. The k parameter, on the other hand, is 

a more structural parameter, depending on the methodology chosen for defining the MoC, rather than the features of the 

model.  

Therefore, a convenient choice can be fixing the values of k once and for all at the moment of the definition of the MoC policy 

of the bank. In this sense, the MoC will be part of the periodic updating of the time series, not requiring any validation activity 

apart from the classification of the change itself.  

The k could possibly be redefined only in case of structural re-design of the models, involving an update of the whole MoC 

policy. This would normally happen in the event of changes classified as model changes, thus requiring a full validation 

activity. 

 

Fortunately, the results obtained for k calibration seem to simplify our issues: as we saw in paragraph 4, k is quite stable across 

the spectrum of sigma input values we used in the simulations, around a value of 0.8. Furthermore, this result suggests that k is 

stable whether type C MoC is the only one included or if it is added with other type A and B MoC. 

In conclusion, therefore, a value of k in that range can serve the purpose of defining the type C MoC, encompassing the 

objectives of both conservativeness and methodological soundness. 

 

 
Silvio Cuneo e Franco Varetto
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