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Abstract 
 
In this paper we make a short survey on the problem of Capital Allocation through the use of risk measures and we apply 
some of the most popular Capital Allocation methods to a portfolio of risky positions by using Value at Risk, Conditional 
Value at Risk and the entropic risk measure. We then discuss and compare the results found in our numerical example. 
 
1 Introduction 
 
Since the first version of the Basel Accord (see [5]) many studies on risk measures and capital requirements have been driven 
both from a theoretical and an empirical point of view. It is well known indeed that the Basel Accord (see [5] and [6]) imposes 
to banks and financial institutions a capital requirement or margin so to be able to face the riskiness due to the different 
sources (market risk, credit risk, ...). In the first version of the accord such a margin had to be measured by means of Value at 
Risk (VaR for short). Even if VaR has been shown to have a lot of drawbacks, it has been used intensively because of its 
simple interpretation and estimation. Among the different drawbacks, VaR does not encourage diversification of risk in 
general, it is not able to distinguish different tails but only considers the quantile, and so on (for a more detailed study please 
see Artzner et al. [2], [3]). 
Although VaR is still widely used by practitioners and researchers, Conditional Value at Risk (CVaR for short, also known as 
Expected Shortfall or Average Value at Risk - see [1], [3], [10] and [14]) is more and more considered. It is well known that, 
compared to Value at Risk, Conditional Value at Risk is a more conservative risk measure that is, it requires a higher margin, 
and encourages diversification. In particular, CVaR belongs to the class of coherent risk measures (see [2], [3]). 
It is worth emphasizing that, for VaR or CVaR, a regulator has only to choose a level α of probability. In particular, the 
smaller is α the more expensive is the margin deposit. It is financially reasonable, however, to consider also risk measures 
taking into account preferences and loss aversion of regulators, e.g. in terms of certainty equivalents. A well-known and used 
risk measure of that kind is the so called entropic risk measure, defined by means of the certainty equivalent with an 
exponential utility function. See [4], [10] and [11] for more details. 
We will recall the definitions of these three risk measures afterwards. 
Anyway, whatever the risk measure chosen, the main idea and motivation of risk measures is related to capital requirements or 
margin deposits. Indeed, given a financial position (or, better, its profit and loss or its return) its riskiness is quantified by the 
minimal cash to be deposited as guarantee of the position or, in other words, such that the new position is considered as 
acceptable by the regulator. More precisely, given a position X and a risk measure ρ, the riskiness of X by means of ρ is given 
by 
 𝜌(𝑋) = 𝑖𝑛𝑓{𝑐 ∈ 𝑅: 𝑐 + 𝑋  𝑖𝑠  𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒} (1) 
 

Roughly speaking, the greater is the riskiness of a position, the higher is the margin to be deposited. See [3] and [10] for 
details. 

 
Among the many, one of the most relevant problems connected to the use of risk measures in firms and insurances, is the one 
of Capital Allocation. 
It consists in, once fixed a suitable risk measure and determined the corresponding risk capital associated to a risky position, 
finding a division of this aggregate capital among the constituents of the activity, such as business units or various insurance 
lines. This problem is particularly meaningful for example in the context of risk management, or for comparing the return of 
various business units in order to remunerate managers. 
As it can be easily understood, there are many possible ways to allocate the aggregate capital of a company to its sub-units, 
according to the features one wants to capture and to properties one wishes to verify. In this respect, a huge literature has 
grown over the years, and several methods have been proposed (see, for example, [9], [13], [7]), where the different 
approaches have motivations that can be either axiomatic or financial. 
In particular, Kalkbrener [13] defines a Capital Allocation rule as a map whose values depend on the profit and loss or return 
of both a portfolio and its subportfolios, and which is required to satisfy some suitable properties w.r.t. the chosen risk 
measures, that is, he proposes an axiomatic approach to the problem. Dhaene et al. [9] put in light some of the financial 
aspects of capital allocation: indeed,  some of its core purposes  for a firm consist in distributing the cost of capital among the 
various business units, as well as in  being able to make  a comparison of their performances through the return of allocated 
capital. The authors also provide an overview on some of the most used algorithms in practice, namely the proportional ones, 
which we will review and use in this paper. Instead, the approach of Centrone and Rosazza Gianin [7], refers both to the 
axiomatic approach and to the game theoretic stream proposed by Denault [8], where firms are seen as players of a 
cooperative cost game derived by a risk measure, and the allocation rule is based on the idea of assigning to each player its 
marginal contribution to the overall risk. 
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Denault's approach is anyway suitable fo coherent and differentiable risk measures, while the capital allocation method 
proposed in [7] is a generalization of the so called Aummann-Shapley capital allocation rule, suitable also for the class of 
quasi-convex and non-differentiable risk measures. 
The aim of this survey is to show how risk measures and capital allocation problems are interconnected: we make use of the 
before cited risk measures to implement some of the most used capital allocation methods in the financial practice on a 
portfolio of stocks. 
  
2 Capital allocations for risk measures 
We begin by recalling (see, among many others, [3], [10], [12] and [14]) the well known definitions of VaR, CVaR and 
entropic risk measure. Given a future time horizon T and a financial risky position X representing the (random) profit and loss 
or return of a financial position at time T, the Value at Risk (VaR) of the position X at the level 𝛼 ∈ (0,1) is defined as 
 
 𝑉𝑎𝑅𝛼(𝑋) = −𝑖𝑛𝑓{𝑥 ∈ 𝑅: 𝑃(𝑋 ≤ 𝑥) > 𝛼} = −𝑞𝛼

+(𝑋), (2) 
 
while the Conditional Value at Risk (CVaR) of X at the level 𝛼 ∈ (0,1) is defined as 
 

 𝐶𝑉𝑎𝑅𝛼(𝑋) = 𝑖𝑛𝑓
𝑥∈𝑅

{
𝐸[(𝑥 − 𝑋)+]

𝛼
− 𝑥} . (3) 

 
CVaR can be also formulated equivalently as 
 

 𝐶𝑉𝑎𝑅𝛼(𝑋) =
𝐸[(𝑞𝛼 − 𝑋)

+]

𝛼
− 𝑞𝛼  (4) 

 
for any quantile qα at the level α of X, or, in terms of the Average Value of Risk: 
 

 𝐶𝑉𝑎𝑅𝛼(𝑋) =
1

𝛼
∫ 𝑉𝑎𝑅𝛽(𝑋) 𝑑𝛽
𝛼

0

 (5) 

 
Differently from VaR, CVaR is a coherent risk measure, hence - in addition to other good properties - it encourages risk 
diversification. 
While VaR can be seen as the maximal loss one can have with probability of at least a given level α, CVaR at level α 
represents the average of losses exceeding VaR at the same level. So, by definition, the capital requirement evaluated by 
𝐶𝑉𝑎𝑅𝛼(𝑋) is always greater than or equal to that by 𝑉𝑎𝑅𝛼(𝑋). 
The entropic risk measure of X at the level 𝛼 ∈ (0,1) is defined as 

 
 𝑒𝛼(𝑋) = 𝛼 ln (𝐸 [𝑒

−𝑋 𝛼⁄ ]) (6) 

 
where α is the reciprocal of the Arrow-Pratt coefficient of absolute risk aversion (see, among others, Föllmer and Schied [10]). 
This means that when α is low, the risk aversion is high and vice versa. Such a risk measure is called entropic because it can 
be seen as the maximal expected loss over a set of scenarios penalized by a term given by the entropy. 
The reason why this risk measure is quite popular is that it is a convex risk measure fulfilling good properties in a dynamic 
setting (see, among others, Barrieu and El Karoui [4] for details). 
Assume now that we have an aggregate risk X which represents the profit and loss of a financial position at a future date T, 
and that this risk is decomposed into sub-units X1, …, Xn, that is 𝑋 = ∑ 𝑋𝑖

𝑛
𝑖=1 . A capital allocation problem consists in finding 

real numbers k1, …, kn, such that 𝜌(𝑋) = ∑ 𝑘𝑖
𝑛
𝑖=1  , where each ki is the capital allocated to each sub-unit Xi, and it should be 

linked in some way to the risk of Xi itself, that is to ρ(Xi). We thus require that the whole capital has to be allocated, this 
property being termed in the literature as full allocation. Another desirable feature of a capital allocation rule, is that the 
capital ki allocated to each sub-unit Xi does not exceed the capital requirement ρ(Xi) of Xi  when considered as a stand-alone 
unit (pooling effect). 
In the following, we will illustrate through a numerical example some of the most popular capital allocation principles, 
namely the proportional and the marginal one, for the most widely used risk measures, that is for VaR, CVaR and for the 
entropic risk measure. These are just few of many possible capital allocation methods: we choose to work with these methods 
because they are very intuitive, easy to implement, and frequently used in the practice also for performance measurement 
purposes. 
We point out that other very popular methods are inspired to cooperative game theory concepts and principles (Shapley value, 
the interested reader can see [8]) but they go beyond the scope of this survey. 
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The first class of capital allocation methods we illustrate is the class of proportional ones (see Dhaene et al. [9]) applied to the 
risk measures we listed above. Each capital allocation rule (CAR) consists in choosing a risk measure ρ and assigning the 
capital Ki to each sub-portfolio Xi, i = 1, …, n, via 
 
 𝐾𝑖 =

𝜌(𝑋)

∑ 𝜌(𝑋𝑗)
𝑛
𝑗=1

𝜌(𝑋𝑖). (7) 

 
We point out that, by using a proportional allocation method, we get the desired pooling effect whenever the risk measure is 
such that ρ(Xi)>0 and it is subadditive. Also notice that, as the risk measures we consider are law invariant, that is the capital 
requirement of a risky position only depends on its distribution, the same holds for the consequent capital allocation scheme. 
The situation is different if we use the proportional method but we consider covariance as a risk measure, that is 
ρ(Xi)=Cov(Xi;X) for a fixed portfolio X: in this case the dependences among the P&L of the various business units matter. We 
also apply this method to a sample. 
The second class of capital allocation methods we consider starts from the idea of measuring how much a single asset 
contributes to the total portfolio in terms of risk, that is it aims at assessing marginal contributions. For the sake of simplicity, 
here we make use of the following rule (see Tasche [15]) applied to the considered risk measures: the capital Ki is attributed to 
each sub-portfolio Xi, i = 1, …, n,  via 

 
 𝐾𝑖 = 𝜌(𝑋) − 𝜌(𝑋 − 𝑋𝑖), (8) 
 
that is by the difference of the risk capital of the portfolio with sub-portfolio i and the risk capital of the portfolio without sub-
portfolio i. Since the sum of marginal risk contributions underestimates total risk, we use an adjusted formula given by 
 
 𝐾𝑖

∗ =
𝜌(𝑋)

∑ 𝐾𝑗
𝑛
𝑗=1

𝐾𝑖 . (9) 

 
in order to get full allocations. We recall anyway that a very popular method based on marginal contributions, intended as 
partial derivatives with respect to the weight of an asset in a portfolio, is the Euler method, so called as full allocation is given 
by the validity of Euler's Theorem for coherent and differentiable risk measures (see again [15]). 
In order to deepen the analysis, we investigate how diversification impacts on capital allocation methods. To perform this we 
consider the diversification index. For any risk measure ρ such that ρ(Xi)>0 the diversification index is given by 

 
 

𝐷𝐼𝜌 =
𝜌(𝑋)

∑ 𝜌(𝑋𝑖)
𝑛
𝑖=1

 
(10) 

 
The index shows how much a portfolio is diversified: when DI is close to 0, it means high diversification, when the index is 
close to 1 it means slight diversification. If the index is above 1 it means that the risk measure is not subadditive. 
As a further example, we also investigate the contribution of sub-portfolios to the total portfolio Return on Risk Adjusted 
Capital (RORAC), which is defined as 

 

 𝑅 =
𝐸[𝑋]

𝜌(𝑋)
. 

 
(11) 

The contribution of each sub-portfolio Xi, i = 1, …, n, is usually given by 
 

 𝑅𝑖 =
𝐸[𝑋𝑖]

𝐾𝑖
 (12) 

 
where Ki, i = 1, …, n, can be either obtained by using a proportional method or a marginal one. Since the sum of contributions 
is not equal to the total portfolio RORAC, we use, once again, an adjusted formula which is defined as 
 
 𝑅𝑖

∗ =
𝑅

∑ 𝑅𝑗
𝑛
𝑗=1

𝑅𝑖. (13) 
 
See [15] for details. 
 
3 Numerical example 
In this section we apply the capital allocation methods presented above to a portfolio of five stocks of the FTSE-MIB index 
chosen in different sectors: Atlantia (ATL), Brembo (BRE), Eni (ENI), Intesa San Paolo (ISP) and Telecom Italia (TIT). We 
collected from Bloomberg five years of daily prices of the stocks listed above, in the period 10th December 2013-2018, 
obtaining a sample of 1269 observations for each asset. 
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We model the daily P&L instead of daily prices, i.e. each stock is represented by the random variable 
 

 𝑋𝑖 = 𝑆𝑡
𝑖 − 𝑆𝑡−1

𝑖  (14) 
 
where 𝑆𝑡𝑖 is the price at day t of the i-th stock, i=1, …,n. The portfolio X is simply given by 𝑋 = ∑ 𝑋𝑗

𝑛
𝑗=1  ; that is, we buy one 

unit of each stock. Figure 1 shows the dynamics of portfolio prices and of the P&L; some descriptive statistics of the P&L of 
the stocks and of the portfolio are reported in Table 1. 

 
Figure 1: Daily portfolio prices and P&L. 

 
Looking at Figure 1 we notice some high peaks followed by a drop, this shows high volatility of data; to be more precise, we 
analyze Table 1. 
 

  ATL BRE ENI ISP TIT Port 

Mean 0.0011 0.0045 -0.0023 0.0002 -0.0001 0.0034 

St Dev 0.3683 0.1618 0.2291 0.0547 0.0188 0.6538 

Min -5.2400 -0.7440 -1.3400 -0.5180 -0.1375 -5.5933 

Max  1.3000 0.8840 0.8500 0.3100 0.1010 2.3360 

Skew  -2.3574 0.2630 -0.2875 -0.5681 -0.0890 -0.8073 

Kurt 36.3471 6.0586 5.3169 11.1909 6.9823 9.8177 
 

Table 1: Daily P&L descriptive statistics. 

 
The means are close to zero, in particular for Intesa and Telecom. This is reasonable since we consider one-day P&Ls. 
Standard deviations and ranges1 confirm high volatility of the portfolio P&L, since the first three stocks have a high standard 
deviation. 
Skewness is positive for Brembo, while it is negative for the others and far from zero for Atlantia. 
Kurtosis is very high, in particular for Atlantia: this can be also seen from the minimum P&L which Atlantia performed in the 
considered period. 
 
                                                           
1 In statistics, the range of a set of data is the difference between the largest and smallest values. 
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Skewness and Kurtosis highlight how the data are far from being normally distributed, taking into account that Normal 
distribution has zero Skewness and Kurtosis equal 3. Rather, they seem to come from heavy-tailed distributions. In such 
situations, therefore, it may happen that VaR does not encourage diversification of risk. 
We apply the considered risk measures to each stock and to the whole portfolio, using the historical simulation method (see 
for instance Jorion [12]); that is, we replace the theoretical distribution of the P&L with the observed time series and we 
compute risk measures using these data. 
To illustrate the procedure we show how we compute historical VaR, i.e. how we sample the empirical quantile. We take each 
time series and sort the data concerning daily P&Ls from the smallest to the largest, then we assign to each price a weight of 
1/1268, where 1268 is the number of observed daily P&Ls. 
We compute the empirical cumulative distribution function by computing cumulative weights: starting from the smallest P&L, 
we sum the weight of the previous P&L to the weight of the current one, until the last observed P&L. 
Then we set α=0.01 and we look for the smallest value which has a cumulative weight greater than 0.01; changing the sign of 
this value, we obtain VaR at the level 0.01. 
We compute in a similar way the other risk measures, letting α=0.01; this means, for the entropic risk measure, a high risk 
aversion and so a more conservative risk measure. We also compute the diversification index, given by Equation (10), for 
each risk measure. The results we obtained are shown in Table 2. 

 

 

 

        ATL BRE ENI ISP TIT Port DI 

VaR0.01 0.8951 0.4216 0.5600 0.1453 0.0480 1.5721 0.7595 

CVaR0.01 1.4950 0.5155 0.7815 0.2045 0.0660 2.4820 0.8104 

e0.01 5.1685 0.6725 1.2685 0.4465 0.0662 5.5218 0.7244 

Variance 0.1356 0.0262 0.0525 0.0030 0.0004 0.4275 1.9644 

  

Table 2: Daily risk measures of stocks and portfolio. 
 
Looking at Table 2 we notice that the entropic risk measure is the most conservative one; this is due to the small value we set, 
as we explained before. 
A diversification effect is obtained for the first three risk measures, despite VaR and the entropic risk measure are, in general, 
not subadditive. 
We check this simply by looking at the diversification index: the first three risk measures have a DI less than 1, hence they are 
subadditive in this example. In particular, the entropic risk measure obtained the highest diversification effect. The 
diversification effect is not achieved from the variance, which is super-additive in this example, in fact it has a diversification 
index greater than 1. 
We compute the risk capital allocated to each stock, using the proportional methods presented in the previous section; the 
results are shown in Table 3. 
 

  ATL BRE ENI ISP TIT 

VaR0.01 0.6798 0.3202 0.4253 0.1103 0.0365 

  (43.2%) (20.4%) (27.1%) (7.0%) (2.3%) 

CVaR0.01 1.2116 0.4178 0.6334 0.1658 0.0535 

  (48.8%) (16.8%) (25.5%) (6.7%) (2.2%) 

e0.01 3.7442 0.4872 0.9190 0.3235 0.0480 

  (67.8%) (8.8%) (16.6%) (5.9%) (0.9%) 

Variance 0.2123 0.0666 0.1154 0.0259 0.0072 

  (49.7%) (15.6%) (27.0%) (6.1%) (1.7%) 
 

Table 3: Daily proportional capital allocation of stocks. 

 
Looking at Table 3 we notice that, for the first three capital allocation methods the risk capital allocated to each stock 
considered as an element of the portfolio does not exceed the risk capital allocated to the stock considered as a stand-alone 
portfolio. 
To check this, we simply compare the results of Table 3 to the results of Table 2; since each value of the first three rows of 
Table 3 is less than the respective value of Table 2, the pooling effect mentioned above is obtained. 
This follows straightforwardly from the diversification effect we obtained in Table 2: as on our data the considered risk 
measures turn out to behave subadditively and as ρ(Xi)≥0 for all i, Equation (7) shows that risk capitals allocated via 
proportional allocation methods benefit of the pooling effect. 
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In particular, the proportional method based on the entropic risk measure has benefited from the highest pooling effect. 
The reason is clear, since the entropic risk measure has the highest diversification index and the proportional methods allocate 
the capital via 𝐾𝑖 = 𝐷𝐼𝜌 ∙ ρ(𝑋𝑖), the allocated capital by using the entropic risk measure is, for each unit of risk capital ρ(Xi), 
less than the capital allocated via proportional methods based on different risk measures. 
Since variance is superadditive in this example, the pooling effect is not obtained from this risk measure and the risk capital 
allocated to each stock considered as an element of the portfolio exceeds the risk capital allocated to the stock considered as a 
stand-alone portfolio. 
The full allocation property is satisfied for each risk measure: summing by row the values in Table 3 we obtain exactly the last 
column of Table 2; that is, the sum of risk capitals allocated to each stock is equal to the risk capital allocated to the portfolio 
using the respective risk measure. 
Furthermore, the results of Table 3 show also that all the capital allocation rules here considered agree in putting more weight 
on Atlantia than on others, reflecting the large risk capital assigned to this single stock. 
Moreover, also the ranking of capital allocation weights across the different sub-units is more or less the same for all the 
different rules that have been considered. So far, we have considered proportional capital allocations using VaR, CVaR, the 
entropic risk measure and covariance. 
We investigate now what happens with marginal or RORAC methods and we compare the results with those of proportional 
methods. A priori we could expect that the marginal method would distribute differently the capital to be allocated by putting 
more weight on the riskier assets. 
Here below (see tables 4, 5, 6 and 7) we present the results obtained by computing the risk capital allocated to each stock, via 
marginal methods and the contribution of stocks to the total portfolio RORAC. 
Each table reports the risk capital allocated to each stock using both proportional methods and marginal ones and the 
contribution of each stock to the total portfolio RORAC, for any single risk measure. For what concerns the contribution to the 
total RORAC, we compute the contributions of stocks by using just the proportional allocation methods. 

       
  ATL BRE ENI ISP TIT 

Proportional 0.6798 0.3202 0.4253 0.1103 0.0365 

  (43.2%) (20.4%) (27.0%) (7.0%) (2.4%) 

Marginal 0.7755 0.285 0.3633 0.0928 0.0555 

  (49.3%) (18.1%) (23.1%) (5.9%) (3.6%) 

RORAC 0.0004 0.0033 -0.0013 0.0004 -0.0007 

  (17.1%) (154.0%) (-58.7%) (20.5%) (-32.9%) 
  

Table 4: VaR daily contributions of stocks 
 

 

  ATL BRE ENI ISP TIT 

Proportional 1.2116 0.4178 0.6334 0.1658 0.0535 

  (48.8%) (16.8%) (25.5%) (6.7%) (2.2%) 

Marginal 1.3998 0.2518 0.614 0.1651 0.0514 

  (56.4%) (10.1%) (24.7%) (6.7%) (2.1%) 

RORAC 0.0002 0.002 -0.0007 0.0002 -0.0004 

  (12.1%) (148.6%) (-49.7%) (17.2%) (-28.2%) 
 
 

Table 5: CVaR daily contributions of stocks. 
 

 

 
ATL BRE ENI ISP TIT 

Proportional 3.7442 0.4872 0.9190 0.3235 0.0480 

 (67.8%) (8.8%) (16.6%) (5.9%) (0.9%) 

Marginal 4.9476 0.1788 0.3283 0.0658 0.0013 

 (89.6%) (3.2%) (6.0%) (1.1%) (0.1%) 
RORAC 0.0000 0.0010 -0.0003 0.0001 -0.0003 

 (5.3%) (171.2%) (-46.0%) (11.8%) (-42.3%) 
 
 

Table 6: Entropic daily contributions of stocks. 
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ATL BRE ENI ISP TIT 

Proportional 0.2123 0.0666 0.1154 0.0259 0.0072 

 (49.7%) (15.6%) (27.0%) (6.0%) (1.7%) 

Marginal 0.1938 0.0718 0.1195 0.0328 0.0094 

 (45.3%) (16.8%) (28.0%) (7.7%) (2.2%) 

RORAC 0.0009 0.0117 -0.0034 0.0014 -0.0026 

 (11.0%) (148.2%) (-43.4%) (17.5%) (-33.3%) 
 
 

Table 7: Covariance daily contributions of stocks. 
 
Looking at Tables 4, 5, 6 and 7 we notice not too significant differences between the proportional methods and the marginal 
one: among different risk measures, both methods agree in putting more weight on Atlantia than on others and the ranking of 
capital allocation weights across the different stocks is the same for both methods. 
Nevertheless, apart from the case of covariance that however is not really a risk measure, it is worth to emphasize that our 
“intuition” concerning marginal contributions was correct. 
Compared to proportional capital allocations, indeed, marginal contributions put more weight (in terms of capital allocation) 
on Atlantia that is the riskiest asset in the portfolio. 
Among different risk measures, the ranking of the contributions to the total RORAC is still the same: Brembo gives the best 
contribution, which is even more than the total RORAC, and Eni gives the worst contribution, which is negative; i.e. it is not 
worth having such an asset in the portfolio, since it reduces the total RORAC. 
Risk capitals allocated via marginal methods benefit of the pooling effect for the first three risk measures, except the capital 
allocated to Telecom using VaR: this amount is larger than VaR of Telecom considered as a stand-alone portfolio. 
As well as for proportional methods, the marginal method based on the entropic risk measure has benefited from the highest 
pooling effect. 
Despite this result it is not evident from marginal methods' formula, the data confirm: comparing the values of Table 2 with 
those of Tables 4, 5 and 6 we can notice that the marginal method based on the entropic risk measure has the highest 
difference between the risk capital of the titles and the capital allocated to them by using this method. 
The pooling effect is not achieved by the covariance marginal allocation method, as well as for the proportional one, as we 
noted above. 
The full allocation property for marginal allocation methods is, of course, satisfied for each risk measure since we use the 
adjusted formulation in (9). By the same argument, the sum of RORAC contributions is equal to the total portfolio RORAC, 
for each risk measure. 
 
4 Conclusions 
In the present work we have revised a problem which is very popular in the financial literature, namely the one of Capital 
Allocation. 
This problem can be faced in many ways, as it is evident from the huge literature on the subject ([16] gives a complete 
overview), but one of the most known is the one illustrated in this work, that is through the use of risk measures. 
Namely, for a given risky financial activity X composed by n sub-units X1, …, Xn,  whose riskiness is covered through a 
capital requirement assessed by a risk measure ρ, the problem consists in suitably sharing the risk capital ρ(X) among the 
business units, in such a way that the capital is fully allocated and that a diversification effect is obtained. 
The possibility of verifying these properties depends both on the chosen risk measure and on the Capital Allocation method. 
In this short paper, we have applied two well known Capital Allocation methods (the proportional and the marginal one) to a 
portfolio of stocks whose capital requirements are determined through three of the most used risk measures: Value at Risk, 
Conditional Value at Risk and the entropic risk measure, and we have compared and discussed the results obtained. 
Based on the numerical example above, we cannot conclude that a given capital allocation method is always better than 
another. 
However, for the risk measures examined the results obtained by proportional and marginal methods are substantially very 
different from those of the RORAC method. Even if proportional and marginal contribution methods seem to provide similar 
results, marginal one better reacts and takes into account riskier assets. 
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