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Abstract 
The study proposes an innovative application of Discrete Event Simulations (DES) and System Dynamics (SD) theory to the pricing 

of a certain kind of certificates very popular among private investors and, more generally, in the context of wealth management. 

The paper shows how numerical simulation software mainly used in traditional engineering, such as industrial and mechanical 

engineering, can be successfully adapted to the risk analysis of structured financial products. 

The article can be divided into three macro-sections: in the first part a synthetic overview of the most widespread option pricing 

models in the quantitative finance branch is given to the readers together with the fundamental technical-instrumental background of 

the implemented DES and SD simulator. 

After dealing with some of the most popular models adopted for Equity and Equity index options, which are the most common 

underlying assets for the certificates structuring, we move, in the second part, to describe how the mathematical models can be 

integrated into a general simulation environment able to provide both DES and SD extensively used in the engineering field. 

The core stochastic differential equation (SDE) will therefore be translated, together with all its input parameters, into a visual block 

model which allows an immediate quantitative analysis of how market parameters and the other model variables can change over 

time. 

The possibility for the structurer to observe how the variables evolve day-by-day gives a strong sensitivity to evaluate how the price 

and the associated risk measures can be directly affected. 

The third part of the study compares the results obtained from the simulator designed by the authors with the more traditional pricing 

approaches, which consist in programming Matlab® codes for the numerical integration of the core stochastic dynamics through a 

Euler-Maruyama scheme. The comparison includes a price check using the Bloomberg® DLIB pricing module and a check directly 

against the valuation provided by the counterparty. 

In this section, real market cases will therefore be examined with a complete quantitative analysis of two of the most widespread 

categories of certificates in wealth management: Multi-asset Barrier Reverse Convertible with Issuer Callability and Multi-asset 

Express Certificate with conditional memory fixed coupon. 
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1) A short time-travel in the Option Pricing theory 
Modern Option Pricing theory starts in 1973 when Black and Scholes (1973) and Merton (1973) proposed the well-known Nobel-

prize formula, which is considered one of the founding blocks of Quantitative Finance. According to Stewart (2013), this should 

undoubtedly be considered one of the seventeen equations that changed the world but it is for sure not the first attempt to try to price 

options. Curious readers may be asking how people used to price these derivatives before the Black-Scholes-Merton (BSM) pricing 

framework (Haug, 2007). 

As early as 1900, Luis Bachelier published the first study about this topic (Bachelier, 1900). In contrast to the BSM theory, he 

assumed a normal distribution for the asset price: in other words, an arithmetic Brownian motion process was adopted to modelize the 

underlying dynamic. This implies that there is a positive probability to observe a negative asset price: a feature that cannot be found 

for any limited liability assets. 

With the presence of negative price levels for interest rates, the log-normal Black formula for pricing options on interest rates (caps 

and floors) has to be switched to a normal pricing framework model. This recent abnormal context allows to reconsider the work of 

Bachelier both in the academic scientific community (among others Burro et al., 2017; Giribone, Ligato, and Mulas, 2017) and in 

specialized professional magazines (Kochkodin, 2019; Stafford, 2020). It is worth noting that negative interest rates also affect 

options with early-exercise features although in a less invasive way. In the case of a call option written on an underlying that has no 

pay-out, the traditional theory states that it is not convenient for the holder to exercise it before maturity (Hull, 2018). In other words, 

the early exercise feature is worth zero. This property is valid only in a standard financial context in which rates are positive. This fact 

has gain interest both among academics (Cafferata, Giribone, and Resta, 2017) and professionals (FINMAB, 2019). 

After Bachelier, other less popular mathematical models have been proposed. In the following literary review, more relevant studies 

that led to the well-known BSM formula will be mentioned (Haug, 2007). Sprenkle assumed the stock price was lognormally 

distributed and thus the asset price followed a geometric Brownian motion, just as in the Black-Scholes analysis (Sprenkle, 1964). In 

this way, he ruled out the possibility of negative stock prices, consistently with limited liability. Moreover, the Sprenkle model 

allowed for a drift in the stochastic differential equation, thus taking into account positive interest rates and risk aversion (Smith, 

1976). He also assumed today’s value was equal to the expected value at maturity. 

Boness (1964) and Samuelson (1965) also assumed a lognormal asset price and they were able to derive a closed formula for a call 

option that looks like the BS formula. In contrast to Boness, Samuelson model can take into account that the expected return from the 

option is larger than that of the underlying asset. These models can be considered preparatory for the mathematical proof that Black-

Scholes-Merton gave eight years later for their formula. 

1973 BSM works only for options on a single stock that pays no dividends, it is based on strong hypotheses and it handles only a 

vanilla (i.e. derivative with a standardized pay-off) European (i.e. the right to exercise the option is only at maturity) option. 

It was a challenging task for both researchers and professionals to generalize the BSM formula and enhance it with all the potential 

fields of improvement: 
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A) As regards the underlying assets, thanks to the studies of Merton (1973), Black (1976), Asay (1982), Lieu (1990), Garman and 

Kohlhagen (1983) and Grabbe (1983); Haug (2007) was able to formulate a generalized Black-Scholes-Merton (GBSM) including the 

cost-of-carry variable in his book for closed formulas option pricing; 

B) Regarding the strong efficient market hypothesis under the 1973 BSM model, excluding those that deal with the class of 

underlyings on which the option is written, many improved models were proposed. These closed-form model categories take the 

name of "Black-Scholes-Merton Adjustments and Alternatives" (Haug, 2007, chapter 6). The proposed adjustments take into account 

the following aspects: Delayed settlement (Hull, 2018), trading-day volatility versus calendar day volatility (French, 1984), discrete 

time hedging (Derman and Kamal, 1999; Wilmott, 2000), transaction costs (Leland, 1985; Hoggard, Whalley, and Wilmott, 1994) 

and trending markets (Lo and Wang, 1995). The alternative models refer to different hypotheses about the stochastic processes 

followed by an input (typically underlying and/or volatility). In this context, the most popular variants of the original model are: 

constant elasticity of variance (Cox and Ross, 1976), BSM adjusted for excess skewness and kurtosis (Jarrow and Rudd, 1982; 

Corrado and Su, 1996), jump-diffusions (Bates, 1991) and stochastic volatility (Hull and White, 1988, Hagan et al., 2002); 

C) The original BSM (1973) was derived by the solution of a Partial Differential Equation, called Fundamental BSM PDE (Duffie, 

2006) where its boundary and initial conditions are strictly related to the pay-off of the European option. In function of the pay-off 

complexity, in some cases this PDE can be analytically solved and we have an exact closed-form solution. The most important results 

are collected by Haug in 2007 (also known as "The Collector" in the eclectic Quant Community) in the bible of pricing closed-form 

formulas, titled "The Complete Guide to Option Pricing Formulas". This field of research was particularly active in the 90’s during 

the boom of financial engineering and quantitative finance. Academics, together with professional Quants, were able to derive various 

ready-to-use closed formulas even for exotic (i.e. non-standard and highly non-linear) and multi-assets pay-off. Among all the 

formulas, the most popular ones with important practical applications are: Barrier (Reiner and Rubinstein, 1991a),  Binary (Reiner 

and Rubinstein, 1991b), Lookback (Goldman, Sosin, and Gatto, 1979; Conze and Viswanathan, 1991) and Chooser (Rubinstein, 

1991) options; 

D) Another field of extension for the BSM formula has been covered by numeric methodologies (Brandimarte, 2006). These are 

necessary in order to fill the gap of not always managing to solve analytically the Fundamental PDE. As a result, it is reasonable to 

implement these approaches when the pay-off is too complex to obtain an exact closed-form solution (for instance in the case of 

Asian Options (Turnbull and Wakeman, 1991) where the pay-off is path-dependent and relies on an arithmetic mean calculation) or if 

the holder has an early-exercise right in discrete (Bermuda option) or in continuous (American option) time (Hull, 2018). The most 

common families of discrete techniques are: numerical schemes for the solution of PDE - Finite Difference Method (Duffie, 2006), 

Finite Elements Method (Chacur, Ali, and Salazar, 2011) or Radial Basis Functions (Pena, 2004), stochastic trees – binomial (Cox, 

Ross, and Rubinstein, 1979), trinomial (Boyle, 1986; Figlewski and Gao, 1999), multinomial lattice (Fabbri and Giribone, 2019) and 

Monte Carlo - numerical solution of Stochastic Differential Equation (Huynh, Lai, and Soumare, 2008). The first two methods are 

deterministic, while Monte Carlo is stochastic although it allows a particular flexibility in the pay-off definition. 

It is worth to note that numerical techniques converge to the BSM pricing framework and they can be programmed (especially the 

Monte Carlo method) in order to take into consideration all the other above extensions (A-B-C) to the traditional formula. Given that 

there is no such thing as a free-lunch, they require a correct control of the numerical error introduced by the discrete integration 

schemes (Cassettari, Giribone and Mosca, 2012). 

With the purpose of pricing certificates on equities or indexes, one of the most important pricing framework adopted by professionals 

is the so-called Local Volatility Monte Carlo model (Bloomberg, 2016). 

It represents an extension of the traditional multi-assets Black-Scholes SDE because volatility is a function of time and of the current 

simulated spot price (Dupire, 1994). This particular volatility, called local or Dupire volatility, is no more a function of time and of a 

single strike price. As a result, it can be very useful with structured products that are typically characterized by more than one 

exercise price, considering that they are composed by option strategies.  

The designed platform is able to evaluate simultaneously the same products using different pricing models. This can be considered an 

added-value of the software to check the different outputs in function of the adopted approach, as a result the platform is able to 

quantify the model risk.  

It is worth to note that the model to be used could depend not only on the available market data but also on the purpose of the pricing 

itself: in fact during the trading sections, traders for assuming long (/short) positions on the single options used to design the products 

can adopt a pricing model different from the counterparties and/or from the model used for the evaluation of the overall structured 

products. 

2) A brief introduction to the Discrete Event Simulation and System Dynamics 
Simulation is the best tool to predict the behavior of real world systems. For the analysis of complex systems, simulation is often used 

prior to the operation of the system as a mediator for a dynamic situation.  

As is well known, the two main methods for dealing with complex systems are the DES (Discrete Event Simulation) and the SD 

(System Dynamics) approaches. The DES approach consists in the representation of a system through the use of discrete state 

variables. In this case, the state variables, which describe the state of the system at any given moment, vary with discontinuities in 

time (i.e. coupon payment, barrier hit, etc.). Since many among such events are dependent from the evolution of the underlying, it is 

useful to rely on continuous variables in time instead of discrete variables, with an SD approach through which it is possible to 

simulate the market prices in detail, allowing to evaluate evolution over time. The mere SD analysis is however not sufficient to solve 

the problem, as it does not allow to simulate with a sufficient computational speed a complex system such as a logistic system, 

characterized by multiple variables. The use of the SD technique would allow to study the system in full detail but it would also make 

the equation system very complex to solve and to understand. 

Market liquidity is an issue of very high concern in financial risk management. In a perfectly liquid market the option pricing model 

becomes the well-known Black–Scholes problem while nonlinear models are used when illiquid market effects are taken into 

account. The Black-Scholes pricing allows investors to calculate the “fair” price of a derivative whose value depends on an 

underlying. One of the major assumptions of the Black–Scholes model is that the market of the underlying asset is perfectly elastic, 
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and this occurs for perfectly liquid markets, but the case is clearly unrealistic (Company et al. 2012). The presence of price impact of  

investors’ trading has been widely documented and extensively analyzed in the literature. In the presence of asymmetric information 

use, an equilibrium approach is to investigate how informed traders reveal information and affect the market price through trading. 

The main advantages of using the SD for modeling Black-Scholes dynamics are described below. Given the non-linear, behavior 

driven, and interconnected characteristics of trading in illiquid markets, modeling concepts from the SD theory provide appropriate 

and attractive features. Furthermore the graphical based modeling approach allows the equations and the complexities to be added 

and integrated step-by-step, thus validated in a simpler way rather than using Matlab or spreadsheet based scripting (Cooke, 2004). 

Finally, SD models are much more maintainable since are easier to understand due to the explicit graphical link among variables and 

their derivates (Giribone, Revetria and Testa, 2013). In this paper, the authors propose a simulative approach combining SD and DES 

where the continuous part is treated using the SD building blocks (stocks for variables and flows for their derivatives) and the event-

based payoff schedules are modeled using DES in the Auxiliary blocks. The resulting advantage of the proposed approach is the 

possibility to demonstrate the price forming process as a set of events easily understandable and transparent to the trader. In this way 

the pricing algorithm is no longer a “black box” accessible only to “quants”, but it becomes instead a link of events and variables that 

can be reviewed by the traders to confirm  better understand their market feelings and expectations even from a quantitative point of 

view. This approach has also been adopted by authors belonging to different economic fields and is now mature enough to be moved 

to the financial sector, where applicability could be easily proven (Damiani et al. 2016).  

3) Implementing the dynamics using System Dynamics: the Black-Scholes and the Local Volatility pricing models 
This section deals with the most popular methodologies used for pricing options and certificates written on Equity assets or indexes: 

Black-Scholes (Eq. 1) and Local Volatility (Eq. 2) pricing framework. After the description of the dynamics, the inputs of these 

Stochastic Differential Equations are described. In particular, a special focus on how to choose the most suitable representation for 

the market data on the selected model has been provided to the reader. 

The models implemented in the platform used for the prospective modeling of the prices of a stock or of an equity index are: 

- the traditional Black-Scholes (BS) stock process in which the underlying price evolves according to the standard Black-Scholes 

model and where the volatility is a constant or a deterministic function of time. 

The stochastic differential equation that describes the model is: 

𝑑𝑆(𝑡) = [𝑟(𝑡) − 𝑞(𝑡)]𝑆(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑆(𝑡)𝑑𝑊𝑡 (1) 

Where: 

𝑆(𝑡) is the stock (or index) price at time 𝑡 

𝑟(𝑡) is the short rate prevailing at time 𝑡 

𝑞(𝑡) is the continuous dividend yield, possibly time-varying, and prevailing at time 𝑡 

𝜎(𝑡) is the volatility and in this pricing framework it may be constant or time-varying 

𝑑𝑊𝑡 is the standard Wiener process, that is a stochastic process with mean zero and variance 𝑡 

The Black-Scholes model for stock price movement assumes stock price paths are continuous, changes in log-price over any time 

interval are normally distributed, and changes in price over one or more disjoint time periods are independent. 

- the Local Volatility (LV) stock process refers to an extension of the BS model in which the volatility is a function of both time and 

stock price.  

As a result, the dynamics which rules the underlying simulation can be expressed according to the following: 

𝑑𝑆(𝑡) = [𝑟(𝑡) − 𝑞(𝑡)]𝑆(𝑡)𝑑𝑡 + 𝜎(𝑡, 𝑆(𝑡))𝑆(𝑡)𝑑𝑊𝑡 (2) 

Where 𝜎(𝑡, 𝑆(𝑡)) is the so-called “local volatility”. 

The advantage of using this more general functional form for 𝜎  is that the model can now be calibrated to match market option prices 

at multiple strikes at a single expiration. In particular, local volatility models overcome Black-Scholes' inability to model the volatility 

smile observed in the market. 

Observing the SDE reported in Eq. 1 and in Eq. 2 it is clear that the two processes differ exclusively in the way volatility is modeled. 

An explanation of the input data constituting the stochastic dynamics and how these have been represented in the simulator is 

provided below: 

- 𝑆 is the asset price, and, for 𝑡 = 0, it is the spot price. 𝑆(𝑡 = 0) is therefore the initial value for the numerical scheme. 

- 𝑟(𝑡) is the zero-rates term structure for the reference currency, derived from the bootstrap of the risk-free par rates curve at the 

valuation date. For instance, if we have a certificate with N assets and N different currencies, we have to take into account N 

dynamics described by Eq. (1) or Eq. (2), therefore we have to consider N different arrays in which we stored the different forward 

rates to be used for calculating the future prices projections. In addition to these values of 𝑟𝐹𝑊𝐷(𝑡) used for the forwarding process, it 

is necessary to specify the product currency for determining the zero-rates term structure to be used for discounting the future cash 

flows. Typically, the discount factors are implied from the zero rates of the currency in which the structured product has been 

denominated by the issuer and it can potentially be different from the currency of the underlying assets. For this reason, it is a good 
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practice to calculate the zero rates (possibly adjusted for the issuer's funding spread) in an array different from the matrix in which the 

rates used in the forwarding are stored. The discount factors are calculated using the continuous compounding formula: 

exp (−𝑟𝐷𝐼𝑆𝐶(𝜏𝑗) ⋅ 𝜏𝑗), where 𝜏𝑗 is the time in which the holder may receive the expected  𝑗-th cash flow. 

- The system is able to handle different approaches for the continuous dividend yield estimation, 𝑞(𝑡). In function of the available 

market data this can be estimated in a backward or forward looking manner. The former estimation method has been performed by 

calculating the continuous dividend yield starting from the ratio between the last paid cash dividend and the current stock spot value 

(or the average of the closing prices recorded in the last year). Obviously, since it is not a methodology based on the expectation of 

future values, a different method is to be preferred, when possible. Among the implemented forward-looking approaches, there is the 

same method described above, but using an expected pay-out estimation into the numerator of the ratio. The disadvantage is that it is 

heavily based on the sentiment of traders. A reasonably more quantitative method is to derive 𝑞 implicitly from the prices of actively 

traded derivatives: for this purpose, the cost-of-carry method can be adopted if quotations of forward contracts are available or, if the 

market is particularly complete, even the put-call parity principle. 

- Volatility plays a central role in the projection of the simulated values and therefore it is possible to model it in different ways, 

especially according to the available market data. The simplest and most adopted approach if the market does not quote an implied 

volatility is the historical method. It is a completely backward-looking approach and given that it typically provides only one 

volatility value associated with the underlying, it has to be kept constant in the implemented SDE. In this case, the estimation has 

been made using the close-to-close method, which is essentially based on the calculation of the standard deviation of the daily returns, 

thus converting them on an annual basis by multiplying the appropriate annuity factor (usually set to √260). If an implied volatility 

surface is available, it is reasonable to use this information in order to better reflect the future expectations linked with the asset price 

level. The quantitative analyst can implement the SDE (2), only if the contributions are complete along the two dimensions of the 

surface (i.e. tenor and moneyness), otherwise the volatility along the surface section used for the calibration of the stochastic 

dynamics can be used for pricing the structured product. In the case of SDE (1), once the strike price, considered particularly 

significant for tuning, has been fixed, 𝜎 remains only in function of time. If there are more prevailing strike prices, the approach 

described may not be adequate since too much weight would be given to a section of the implied volatility surface corresponding to a 

single strike price rather than to other portions characterized by values that are still important and significant for an adequate 

calibration of the model parameters. Taking this fundamental aspect into account, especially in the presence of potential highly 

structured products such as certificates that can incorporate dozens of exotic options at the same time, it is reasonable, if the market 

provides to the Quant complete and consistent portions of the volatility surface, to increase by one dimension the representation of 𝜎 

which goes from being a function of the single time variable, 𝜎(𝑡), to a surface, which is in function of both time 𝑡 and the 

prospective underlying value 𝑆𝑡, 𝜎(𝑡, 𝑆𝑡). This extension of the model is called Local Volatility and is currently the model 

implemented by default by the calculation modules for the most popular structured products in the financial field, including 

Bloomberg® - DLIB (Bloomberg, 2016). Bruno Dupire proposed a methodology capable of converting the surface of the market 

implied volatilities, which have the time and strike price dimensions, into one of equivalent dimensions, suitable to be used for the 

Local Volatility model that has the characteristic to not use fixed strike prices, but use projected spot values instead, hence the “local” 

term (Dupire, 1994). The proposed pricing platform is able to create a Dupire volatility surface starting from a generic implied 

volatility surface using the conversion formula: 

𝜎(𝑆𝑡 , 𝑡) = √
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 (3) 

with 𝐾  being the strike price of the implied volatility surface (Franco, Polimeni, and Proietti, 2002). 

- the Wiener process, 𝑑𝑊𝑡  has been implemented using the traditional numerical discretization: 𝜀√𝑑𝑡, where 𝜀 is a random draw from 

a standard normal distribution. This contribution, which makes the dynamics stochastic, plays a key role in the modelling of the 

correlation between the underlyings in case of multi-assets certificates (Bagnato and Giribone, 2021). In order to incorporate the 

correlation matrix for the assets in the Monte Carlo simulation, the Cholesky decomposition can be used. Assuming you have a set of 

unrelated random numbers ε⃗ = 𝜀1, 𝜀2,𝜀3,… . . 𝜀𝑇, the Cholesky decomposition allows you to transform them into a set of correlated 

variables 𝑎⃗ =  𝑎1, 𝑎2,𝑎3,… . . 𝑎𝑇. If 𝑎⃗ and 𝜀 are column vectors with N rows, and R is the correlation matrix, it is possible to apply the 

following transformation:  

𝑎⃗ = 𝑀ε⃗  (4) 

Where 𝑀 is a matrix that must satisfy the condition 𝑀𝑀𝑇 = 𝑅. The matrix 𝑀 can be obtained by applying the Cholesky 

decomposition to 𝑅. Subsequently, the correlated shocks (𝑎⃗) are substituted to the innovations (ε). 

Another aspect that must be taken into consideration when implementing stochastic dynamics is the potential coexistence of different 

currencies between basket assets and/or discount currencies. This characteristic can be implemented through the so-called “Quanto 

effect”, which provides an adjustment to the core SDE drift adding to the canonical term [𝑟(𝑡) − 𝑞(𝑡)] the corrective factor equal to 

−𝜌𝑆,𝐹𝑋𝜎𝑆𝜎𝐹𝑋, where 𝜌𝑆,𝐹𝑋 represents the correlation between the equity underlying 𝑆 and the exchange rate, 𝜎𝑆 is the underlying 

volatility and 𝜎𝐹𝑋 is the forex volatility (Hull, 2018). 

These elements make it therefore possible to carry out simulations of the underlying prices (typically equity and equity index) till the 

expiry of the structured product to be valued and analyzed. Considering that the single numerical solution of the SDEs obviously 

leads to the estimation of a single price, it is necessary to conduct more integrations of Eq. (1) and (2) in order to have more prices for 

the structured instrument and, in line with the founding principles of the Monte Carlo pricing methodology, the average of these 

prices, discounted back at the valuation time, provides the expected theoretical value for the certificate (Glasserman, 2003). The 
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proposed simulation approach allows to carry out multiple concurrent numerical integrations for each time-step (𝑑𝑡) set equal to a 

working day, making the pricing platform particularly flexible and suitable for accurate analysis of the price formation and of the risk 

measures associated with the product. 

4) Implementing the financial characteristics of the most popular and traded certificates 
The particular characteristics of today's financial markets, characterized by low yields and deep negative risk-free interest rates, have 

led private investors to request structured products in order to have a higher return compared to standard financial products, although 

they need to be aware of a greater risk. 

Certificates represents a valid solution to this demand. Drawing up a taxonomy of all possible commercial structured products on the 

market is a difficult, if not impossible, undertaking, even more so considering the possibility of creating ad-hoc structures to reflect 

the particular needs of wealth management and the most advanced investors. 

In this regard, we recall that a classification of the structured products was carried out by the EUSIPA - European Structured 

Investment Product Association - professional association which proposed the well-known EUSIPA Derivatives Maps, an exhaustive 

classification of the most popular structured products (EUSIPA, 2020). 

The main market players have added names to this "standardized" classification and they are certainly more bizarre and attractive 

from a commercial point of view than a technical (and sometimes numerical) identification (for instance Phoenix or Snowball 

certificate rather than autocallable product with conditional coupons having memory effect) 

From the point of view of the pricing process, it is important for an engineer to focus on the definition of the pay-off and on the 

mechanics of the product for retrieving the key concepts with the aim of facing the pricing problem in the most general manner. 

Having made this premise and having programmed an engine capable of producing a set of simulated values for a desired future time, 

as described in paragraph 3, the present section focuses on the analysis of the most common features that can be associated with a 

structured product. 

However, in order to make the reasoning more concrete, we will specify in the following part, which among the products on the 

market have the described technical characteristics. 

- from a commercial perspective, one of the most interesting features is the attractiveness of the potentially very high coupon amount 

(obviously in return for a typically greater risk of loss of part of the invested capital at the maturity date). Coupons can be guaranteed, 

or if the certificate does not foresee to be called up before the contractual expiry, they are always paid on the dates indicated in the 

prospectus or they are conditional. In the latter case, the coupon is paid if the asset characterized by the worst performance is above a 

threshold level (Coupon Trigger), typically expressed as a percentage of the underlying initial fixing value. Thus in this case there are 

as many digital cash-or-nothing options as there are coupons that can potentially be paid to the investor. A feature that is often 

associated to this kind of coupons is the presence of a so-called “memory effect” to be applied on the coupon strip. In such case, when 

the condition that all the assets be above the Coupon Barrier is not reached, nothing has to be paid to the holder of the structured 

product, as in the previous case, but if the event occurs again in the future such that all assets in the basket are above the threshold, 

then an amount will be paid equal to the sum of all the coupons that should have been paid previously, starting from the last coupon 

cash flow received. From the point of view of the Monte Carlo model, the simulation of each path will be considered in 

correspondence with the event dates of potential coupon payment. If the prospective value of the worst asset has a higher 

performance than the Coupon Trigger Percentage then the coupon amount due on the date will be added to the Net Present Value of 

the instrument after having discounted it for the appropriate discount value, otherwise zero. If the “memory effect” is present, it is 

necessary to store the date of the last coupon paid in an array in order to match the total amount of past unpaid coupons if the positive 

event occurs again. It is reasonable to model guaranteed coupons as a degenerate case of conditional coupons by setting the coupon 

trigger barrier equal to zero. Recent market trends have led to the structuring of certificates with coupon strips belonging to the most 

different categories, including Reverse Convertible (the pay-off at the redemption date is characterized by a short position in a vanilla 

put option), Barrier Reverse Convertible (the pay-off at the redemption date is characterized by a short position in a knock-in barrier 

put option), partially guaranteed capital products (the pay-off at redemption date is characterized by a call spread option strategy) and 

autocallable (certificates having a potential automatic early-redemption determined by the exceeding of the basket performance 

threshold). 

- the pricing platform has to take into account that many products on the market have the feature to be potentially redeemed before 

the maturity date. Early redemption typically depends on the issuer (Issuer Callability) or on the achievement of a market condition 

(Autocallability clause). The former category, less common among retail investors, provides that the issuer of the structured product 

has the right to recall the certificate on certain pre-fixed dates, while the latter and much more widespread category, provides that the 

product is automatically redeemed  upon the occurrence of a market condition (regardless of the will of the issuer or the holder). 

Typically, this happens when the performance of the worst assets in the basket reaches a value higher than a threshold value 

(autocallable barrier) on certain predetermined dates (autocallable dates). This trigger is usually expressed as a percentage 

(decreasing, constant or increasing over time) of the initial fixing prices of the assets in the basket of the certificate. 

From a mathematical perspective, the autocallability can be straightforwardly modeled: it is necessary to simulate the underlying on 

the event dates, choose the asset in the basket that has had the worst performance and compare it with the threshold level: if it is 

above the threshold level, the certificate is called and, usually, the last coupon is paid at the same time, otherwise it continues until the 

next date of the potential automatic early redemption where the autocallability test will be repeated or, if no other future dates are 

foreseen, then the products will be redeemed at maturity. 

The modeling of the convenience of early exercise by the issuer for such complex products is undoubtedly more challenging. In this 

case, similarly to standard financial products, the Bellman principle of optimality should be applied (Giribone, 2021). In this specific 
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context it is necessary to quantify the convenience for the issuer to redeem the certificate earlier by comparing the price simulations at 

maturity with those at the earliest issuer call date. 

The expectation of the instrument is as follows: 

𝑝𝑟𝑜𝑏𝑖𝑠𝑠𝑢𝑒𝑟 𝑐𝑎𝑙𝑙 ⋅ 𝑃𝑟𝑖𝑐𝑒𝑖𝑠𝑠𝑢𝑒𝑟 𝑐𝑎𝑙𝑙 𝑑𝑎𝑡𝑒 + (1 − 𝑝𝑟𝑜𝑏𝑖𝑠𝑠𝑢𝑒𝑟 𝑐𝑎𝑙𝑙) ⋅ 𝑃𝑟𝑖𝑐𝑒𝑟𝑒𝑑𝑒𝑚𝑝𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑒  (5) 

It is worth observing that, given the discretion that the issuer has to recall the certificate, factors that cannot always be directly 

measured or quantified could potentially affect the overall instrument valuation. 

Structured products that typically include the autocallability features, technically called Autocallables, are often referred to with the 

commercial name of “Express Certificates” and when these include conditional coupons they are referred to as “Phoenix” or if they 

pay coupons with a memory effect, they are often called “Snowball”. 

The Issuer Callability feature is generally associated with the family of certificates belonging to barrier reverse convertibles. 

- The pay-off at maturity determines which macro-category the certificate belongs to and therefore plays a fundamental role in 

determining the fair value. Given the multiple characteristics, its definition in the pricing platform is extremely customizable. Here is 

a non-exhaustive list of the most common pay-offs to be applied at maturity date: 

A call spread can be used to structure a product that allows a bounded participation below (capital protection floor) and / or above 

(cap) an equity underlying at maturity. 

A short position in a put is used to represent the pay-off of a reverse convertible or discount certificate. Similarly in a barrier reverse 

convertible or in a barrier discount certificate, a short position in a knock-in put option can be used. In this last case, the barrier level 

plays the role of conditionally protecting the capital up to that value. 

As a result, the knock-in barrier level in the put option plays a fundamental role in the conditional protected certificate because if this 

is not reached (at maturity in the case of "European" monitoring or throughout the life of the product in the case of continuous 

monitoring, called "American") by the worst of the assets in the basket, it protects the investor who receives the entire amount 

invested (100).  

Otherwise, if only one of the underlyings of the certificate exceeds the barrier level, then in this case the short position of the put is 

activated at maturity and therefore the holder could proportionally lose  part of the invested amount. 

The same can also be said for Autocallables, which in their standard versions (strike percentage equal to 100% of the initial fixing) 

share the same characteristics at maturity as the previous ones. 

5) The output measures for a complete analysis of the certificate 

The simulation platform allows to monitor and track all the relevant variables for a complete analysis of the product day after day 

through textboxes and iterative graphs. 

The main Graphical User Interface allows to display the most important quantitative measures, among which: 

- the simulated paths for each underlying. 

- the most significant market input used for the SDE integrations. 

- The hitting probabilities for the main triggers associated with the basket product, such as barrier levels and coupon levels. 

- The hitting probabilities for the main triggers associated with the product, such as the automatic early redemption and the issuer 

callability. 

- The distance to barriers. 

- The theoretical product price, splitted into its components. 

- the platform allows to modify in real-time and dynamically the model parameters for a complete what-if analysis. 

- the simulator allows to implement stress tests through the implementation of constant or time-varying bumps applied to each of the 

variables. 

- The pricing platform is also able to estimate the main Greeks thanks to the possibility to handle the parameters of the random 

number generator. Allowing to manage the seeds which generate the simulations, the sensitivities of the products can be computed 

using the traditional finite difference method with the typical 1% bump to be applied to the input parameters. These sensitivity 

measures are estimated at product level and for each asset of the certificate basket.  

- The software can generate empirical probability distributions for the product price and for the risk measures, associating  a custom 

statistical distribution to each input. These types of simulations can be very useful for studying the behavior of the valuation of the 

certificate under extreme scenarios (5% or 1% percentiles). 

In addition to these analyses, all the intermediate results are available in dedicated modules of the simulator. 

The user is therefore able to perform a deep analysis and inspect the values of variables up to a single day for each variable indexed to 

time, among which: 𝑟(𝑡), 𝑞(𝑡), 𝑆(𝑡) and  𝜎(𝑡). 



   

 

 

RISK MANAGEMENT MAGAZINE – Volume 16, Issue 2 – Page - 81 - 

 

6) Pricing and Risk Analysis: Market Cases 
The first pricing example is related to the quantitative analysis of a Barrier Reverse Convertible with Issuer Callability. The financial 

characteristics of the Certificate are summarized in Table A.1. 

The valuation date for the structured product is June 8
th

, 2021 and the market data used for pricing the assets are summarized below 

(Source: Bloomberg®): 

 

- Table A.2 contains the interest rates term-structure used for the discounting of the expected future cash flows, 𝑟𝐷𝐼𝑆𝐶(𝑡). 

- Table A.3 contains the interest rates term-structure used for the forwarding of the three underlyings in US dollars, 𝑟𝐹𝑊𝐷(𝑡). 

- Table A.4 contains the implied dividend yields, 𝑞(𝑡) and the spot prices 𝑆(𝑡 = 0) for the three assets. Together with such market 

data, the key parameters associated with the underlyings for the representation of the certificate mechanics are reported: Strike level 

(100% of the Initial Fixing) and the knock-in barrier level (54.6% of the Initial Fixing). 

- Figures A.1, A.2 and A.3 show the implied volatility surfaces associated with the three assets. For the BS engine, 𝜎(𝑡) has been 

calibrated in accordance with the moneyness of the Strike Price, while for the “Local Volatility” model, these surfaces have been used 

for the generation of the volatility “à la Dupire”, 𝜎(𝑡, 𝑆(𝑡)). 

- Given that there is a quanto effect, due to the fact that the currency of the discount curve (EUR) is different from the currency of the 

three assets (USD), Table A.5 shows the input of the model related to the forex. 

 

Starting from the historical prices of the underlying basket and the exchange rate, the intermediate variables leading to the final result 

have been estimated. In particular, the matrix of the correlations between assets for the random number generation in accordance with 

the Cholesky decomposition, the correlation between asset and the exchange rate (𝜌𝑆,𝐹𝑋) and the forex volatility, 𝜎𝐹𝑋. 

 

The fair value of the certificate without taking into consideration the Issuer Callability has been estimated by the pricing platform 

equal to 106.06, the issuer call probability is high and equal to 92.65%. As a result, the probability to hit the continuous-time barrier 

is low and equal to 7.36% 

 

Considering that the product can be called by the issuer at 100 on June 23
rd

, 2021, the fair value converges to 97.22 and such price is 

aligned with the Bloomberg® (ALLQ) quotes that displays a bid price of 97.13. 

 

Regarding the main first-order risk measures: 

 

- The overall delta for the product is 0.2245. The sensitivity respect to the spot prices can be divided out among the assets of the 

basket as follows: ΔMCD = 0.0694 , ΔPM = 0.0783 and ΔKHC = 0.0768. 

- the overall vega for the product is -0.5382. The sensitivity respect to the volatility can be divided out among the assets of the basket 

as follows: ϑMCD = −0.1286 , ΔPM = −0.1688 and ΔKHC = −0.2408. 

- The rho of the product, that is the sensitivity respect to the interest rates, is 0.1142. 

Figure 1 shows the GUI of the pricing platform highlighting all the main calculations useful for a deep understanding of the analyzed 

products. 

 

The second market case regards the pricing of an Express Certificate with conditional memory coupon. Its main financial 

characteristics are synthetized in Table B.1 

 

Similarly to what was done in the previous analysis, the market data used for pricing are summarized below (Source: Bloomberg®, 

Valuation Date: June 8
th

, 2021). 

 

- Table B.2 contains the interest rates term structure used for both the discount factors calculations and the forward rates used during 

the projection of the assets,  𝑟(𝑡). In this case, the product is not characterized by a quanto effect, given that the only currency is the 

Swiss Franc (CHF). 

- Table B.3 contains the key values for the underlyings: strike prices (100% of the Initial Fixing), barrier levels (60% of the Initial 

Fixing), coupon barriers (60% of the Initial Fixing), autocallability levels (100% of the Initial Fixing), spot prices and implied 

dividend yields. 

- Figures B.1, B.2 and B.3 show the implied volatility surfaces of the three assets: for the BS model, 𝜎(𝑡) has been tuned along the 

moneyness of the Strike Price; for the “Local Volatility” model these surfaces have been used as the starting point for the creation of 

the volatilities “à la Dupire”, that is 𝜎(𝑡, 𝑆(𝑡)). 

 

The fair value of the analyzed certificate is equal to 96.82 and it is aligned with the Bloomberg theoretical price (the Local Vol model 

implemented in the DLIB module gives a value of 96.66) and the counterparty quote (ask price is 96.85). 

 

Regarding the main first-order Greeks: 

 

- the delta of the product is 0.607728 and the sensitivity respect to the spot prices can be divided out among the assets as follows: 

ΔBAER = 0.046698 , ΔCSGN = 0.50166 and ΔZURN = 0.05937. 

- the vega of the product is -0.84556 and the sensitivity respect to the volatility can be divided out among the assets as follows: 

ϑBAER = −0.0644 , ϑCSGN = −0.6810 and ϑZURN = −0.10016. 

- the product has a rho (sensitivity respect to interest rates) equal to -1.2429. 

 

Figure 2 shows the GUI of the simulator with all the computed analytics. 
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Figure 1 Quantitative Analysis for the Barrier Reverse Convertible 
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Figure 2 Quantitative Analysis for the Express Certificate 
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7) Conclusions 
This paper has shown how Discrete Event Simulations (DES) and System Dynamics (SD) techniques can also be successfully applied 

to a context that is quite different from traditional engineering: in particular the authors proposed a very innovative application to 

quantitative finance and risk management. 

One of the main results of this study is the creation of a simulator, able to perform a complete quantitative analysis associated to 

highly structured certificates, financial products mainly reserved to private banking and Finance professionals. 

One of the main advantages of using a visual block-oriented simulator rather than more traditional programming techniques is that it 

allows the user (not necessarily a high-skilled quant or a financial engineer) to understand the most important factors in the formation 

of the fair value of the structured product and to consequently develop a high sensitivity to the product. 

The innovative platform was therefore created with the intention of proposing an innovative tool for product design, for checking the 

price provided by the counterparties and for conducting scenario or what-if analyses in a very easy, precise and intuitive manner. 

Furthermore, an analyst is able to model the dynamics, the market data, the financial characteristics of the products and the pay-off 

without having specific skills in programming. 

This can undoubtedly be considered of great help in daily operations: a trader can calculate the simulated day-by-day portfolio profit 

in a very easy way without the need to explicitly code scenarios or what-if analyses or sensitivities exposure: it is enough to drag-and-

drop or linking objects or editing parameters directly from the platform. 

An interesting further development of this study consists in implementing different stochastic differential equations suitable for 

representing dynamics that differ from Equities or Indexes, such as commodities and interest rates. 

Another possible extension of the platform is to apply the same pricing framework to credit derivatives for which the Probability of 

Default can be modelled using the KMV model, which is a particular extension of the traditional Merton approach. 

Given that the underlying SDE is the Geometric Brownian Motion in this case as well, the mathematical model already implemented 

in the platform can be easily extended for this purpose. 
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Appendix: Financial Characteristics and Market Data 

 

A. Barrier Reverse Convertible with Issuer Callability Pricing Data 

 

 
Underlyings [Currency] KHC UQ [USD] - MCD UN [USD] - PM UN [USD] 

Product Type Description Barrier Reverse Convertible (Worst of Assets) 

Initial Fixing Date 23-Dec-2020 

Issue Date 30-Dec-2020 

Final Fixing Date 23-Dec-2022 

Redemption Date 30-Dec-2022 

Issue Price 100 

Quoting Type Description Dirty 

Call Frequency Description Monthly 

Barrier Trigger Percentage 54.6% 

Next Issuer Call Date 23-Jun-2021 

Barrier Type Description American 

Call Type Description Issuer Call 

Currency Description EUR 

Quanto Product Yes 

Coupon Type Description Guaranteed Coupon 

Coupon Frequency Description Monthly 

Coupon Per Period 0.458 

Next Coupon Observation Date 23-Jun-2021 

Coupon Paid 2.29 

Coupon Rate Per Annum 5.5 

Coupon Paid Difference 0.458 

Strike Percentage 100% 

Redemption Amount 100 

  

Table A.1 Financial Characteristics of the Barrier Reverse Convertible 

 

 
 

Term Implied Rates Implied DF 

1 WK -0.522452 1.000102 

2 WK -0.536585 1.000209 

3 WK -0.594567 1.000347 

1 MO -0.587893 1.000523 

2 MO -0.581348 1.000986 

3 MO -0.577738 1.001478 

6 MO -0.578874 1.002947 

9 MO -0.607666 1.004619 

1 YR -0.593523 1.006036 

18 MO -0.578299 1.008874 

2 YR -0.562421 1.011502 

3 YR -0.500185 1.015344 

5 YR -0.362468 1.018555 

 

Table A.2 Discount Curve, Reference Date: 8
th

 June 2021, Currency: EUR. Source: Bloomberg® 
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Term Par Rate Zero Rate Discount 

EDM1 0.122479 0.124161945 0.99967009 

EDU1 0.119495 0.122697264 0.999368225 

EDZ1 0.16871 0.138457361 0.998942215 

EDH2 0.152632 0.14245755 0.998556952 

EDM2 0.186173 0.152143165 0.998051134 

EDU2 0.244482 0.167715414 0.997434723 

2 YR 0.22217 0.222090614 0.995555923 

3 YR 0.412 0.412111124 0.987701626 

4 YR 0.6356 0.637426342 0.974808227 

5 YR 0.8411 0.845907807 0.958564366 

 

Table A.3 Forward Curve, Reference Date: 8
th

 June 2021, Currency: USD. Source: Bloomberg® 

 

 

 

 

Underlying Bloomberg 
Ticker 

Initial Fixing 
Level 

Barrier Level 
(54.60%) 

Strike Level 
(100%) 

Spot Level Dividend 
Yield 

Kraft Heinz KHC UQ 34.80 USD 19 USD 34.8 USD 43.88 USD 2.461% 

McDonald's Corp MCD UN 212.02 USD 115.76 USD 212.02 USD 231.69 USD 1.706% 

Philip Morris Int PM UN 82.20 USD 44.88 USD 82.2 USD 98.56 USD 4.435% 

 

Table A.4 The Underlying characteristics, Reference Date: 8
th

 June 2021. Source: Bloomberg® 

 

 

 

 

 
 

Figure A.1 Implied Volatility Surface of KHC US Equity. Reference Date: 8
th

 June 2021. Source: Bloomberg® 
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Figure A.2 Implied Volatility Surface of MCD US Equity. Reference Date: 8
th

 June 2021. Source: Bloomberg® 

 

 

 

 
 

Figure A.3 Implied Volatility Surface of PM US Equity. Reference Date: 8
th

 June 2021. Source: Bloomberg® 

 

 

 

Spot 1 WK 2 WK 1 MO 3 MO 6 MO 9 MO 1 YR 2 YR 3 YR 5 YR 

0.8215 0.8214 0.8213 0.8210 0.82 0.8186 0.8169 0.8154 0.8085 0.799 0.7726 

 

Table A.5 USD/EUR Forward Curve. Reference Date: 8
th

 June 2021. Source: Bloomberg® 
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B. Express Certificate with Conditional Memory Coupons pricing data 

 

 

 
Underlyings [Currency] BAER SW - CSGN SW - ZURN SW 

Product Type Description Express Certificate (Worst of Assets) 

Initial Fixing Date 09-Feb-2021 

Issue Date 17-Feb-2021 

Final Fixing Date 09-Feb-2023 

Redemption Date 16-Feb-2023 

Issue Price 100 

Quoting Type Description Dirty 

Call Frequency Description Quarterly 

Barrier Trigger Percentage 60% 

Call Trigger Percentage 100% 

Coupon Trigger Percentage 60% 

Next Autocallable Date 09-Aug-2021 

Barrier Type Description European 

Call Type Description Auto Call Fixed 

Currency Description CHF 

Quanto No 

Coupon Type Description Conditional Memory Fixed Coupon 

Coupon Frequency Description Quarterly 

Coupon Per Period 2.175 

Next Coupon Observation Date 09-Aug-2021 

Coupon Paid 2.175 

Coupon Rate Per Annum 8.7 

Coupon Paid Difference 2.175 

Strike Percentage 100% 

Redemption Amount 100 

 

Table B.1 Financial Characteristics of the Express Certificate 

 

 

 

Term Par Rate Zero Rate Discount 

6 MO -0.7062 -0.7173 1.0036 

SFFR0AG -0.707 -0.7139 1.0042 

SFFR0BH -0.7004 -0.7104 1.0048 

SFFR0CI -0.6934 -0.7057 1.0053 

SFFR0DJ -0.6841 -0.7036 1.0059 

SFFR0EK -0.6749 -0.7004 1.0064 

SFFR0F1 -0.6655 -0.6966 1.0070 

SFFR0I1C -0.6463 -0.6857 1.0087 

2 YR -0.6461 -0.6484 1.0131 

3 YR -0.5745 -0.5761 1.0175 

4 YR -0.4875 -0.4893 1.0198 

5 YR -0.395 -0.3969 1.0201 
 

Table B.2 Forward and Discount Curve, Reference Date: 8
th
 June 2021, Currency: CHF. Source: Bloomberg® 
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Underlying Bloomberg 
Ticker 

Initial 
Fixing 

Strike Level 
(100%) 

Knock-in 
Barrier Level 

(60%) 

Coupon 
Barrier Level 

(60%) 

Autocall 
Barrier Level 

(60%) 

Credit Suisse AG CSGN SE 12.30 12.30 7.38 7.38 12.30 

Julius Baer Group BAER SE 54.90 54.90 32.94 32.94 54.90 

Zurich Insurance ZURN SE 375.00 375.00 225.00 225.00 375.00 

 

Underlying Bloomberg 
Ticker 

Spot Level Dividend Yield 

Credit Suisse AG CSGN SE 9.806 0.515% 

Julius Baer Group BAER SE 61.08 1.174% 

Zurich Insurance ZURN SE 372.35 2.59% 

Table B.3 The Underlying characteristics, Currency: CHF. Reference Date: 8
th

 June 2021. Source: Bloomberg® 

 

 
 

Figure B.1 Implied Volatility Surface of BAER SW Equity. Reference Date: 8
th

 June 2021. Source: Bloomberg® 

 

 
 

Figure B.2 Implied Volatility Surface of CSGN SW Equity. Reference Date: 8
th

 June 2021. Source: Bloomberg® 
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Figure B.3 Implied Volatility Surface of ZURN SW Equity. Reference Date: 8th June 2021. Source: Bloomberg® 

 

 

C. The Pricing Platform 

 

 
Figure C.1 Stochastic Simulations Core Engine 
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Figure C.2 Pay-Off Block Diagram 
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Figure C.3 Price splitting and market data inspection 

 

 

 


