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Abstract 
 
The estimate of the probability of default plays a central role for any financial entity that wants to have an overview of the risks of 
insolvency it may incur by having economic relations with counterparties. This study aims to analyze the calculation of such 
measure in the context of counterparty risk from a current and prospective standpoint, by using dynamic neural networks. The 
forecasting aspect in the calculation of such risk measure is becoming more and more important over time as current regulation is 
increasingly based on a "Through the Cycle" and not a "Point in Time" assessment, consequently giving fundamental importance to 
such estimate. To this end, three different models aimed at calculating the Probability of Default have been investigated: the CDS 
method, the Z-Spread method, and the KMV method (Kealhofer, Merton and Vasicek). First, the different techniques have been 
applied to one of the main suppliers of gas and energy in Italy as a reference company. Then, they have been applied to calculate the 
same risk measure on the 50 companies included in one of the most important European indices, the Euro Stoxx 50. 

Key Words: 
Default Probability, Counterparty Risk, Credit Default Swap, Corporate Bond, KMV model, Nonlinear Auto-Regressive (NAR) 
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1) Dynamic neural networks for forecasting a time series 

Artificial Neural Networks (ANNs) are a field of Machine Learning and they represent the cornerstone of Deep Learning 
algorithms. They owe their name and structure to the human brain, as they emulate the way in which biological neurons send signals 
to each other by acquiring knowledge of the external environment (Arbib, 2003). There are different types of neural networks, and 
they are classified according to the different purposes for which they are used. The perceptron is the oldest and simplest form of 
artificial neural net created by Frank Rosenblatt in 1958. It has an input layer, a single hidden layer and an output layer (Rosenblatt, 
1958). Feedforward neural networks, also called multi-layer perceptrons (MLPs), are formed by an input layer, two or more hidden 
layers and an output layer (Haykin, 1994). Convolutional neural networks (CNNs) are similar to feed-forward networks, but their 
architecture is much more sophisticated (Cun et al., 1990). They are typically used for image recognition, pattern recognition and 
computer vision (Krizhevsky et al., 2012). This article focuses on recurring neural networks, or RNNs, which are characterized by 
feedback loops used for modeling time series to make predictions about future results (Kolen and Kremer, 2001). They are widely 
used in finance, for example for making predictions (Decherchi and Giribone, 2020). In order to make time series predictions using 
dynamic neural networks, it is necessary to use a sequence of values as input, in the first place, and, subsequently, to set the 
corresponding network in such a way so that it can use its previous values to best interpret the non-linear relations present in it 
(Tsay, 2010). We focus on recurring networks of the Non-linear Auto-Regressive network (NAR) type, which exclusively use the 
endogenous variable to perform this task (Beale et al., 2014). When a neural network is designed with these purposes, the hypothesis 
behind the reasoning is that the value in 𝑡 of the time series can be a function of its past values. Furthermore, the prediction can be 
carried out at different depth levels: for example, if the goal is to find the value of a share on the following day, a step ahead 
prediction will be implemented. Likewise, if an analyst is interested in the trend that a certain variable may have over time, he will 
perform a multiple-step ahead prediction (Giribone et al., 2018). The quantity and quality of available data play a crucial role in the 
training of the network. Indeed, the available dataset needs to be as deep and complete as possible in order to obtain a statistically 
reliable forecast (Géron, 2019). The autoregression of the network can be mathematically represented by the following 
relationship: 𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … , 𝑦(𝑡 − 𝑛)) where 𝑦(𝑡) is the time series to be modeled and 𝑦(𝑡 − 1), 𝑦(𝑡 − 2), 𝑦(𝑡 − 𝑛) are the past values of the time series itself up to 𝑡 − 𝑛 time lags (Agosto and Giribone, 2019). Similarly to the static 
version, NARs must also be trained using a gradient method. Through this procedure, the statistical model calibrates its own 
parameters in order to best interpret the input data. In the design of the architecture, particular attention was paid to the potential 
problem of over-fitting by dividing the sample of available data into a training-validation-test set (Giribone, 2020). In addition, 
different network configurations have been examined by putting as a parameter the number of hidden layers, the number of neurons 
and the lags with which the forecasting problem is to be econometrically faced. The selection measures to reach the best predictive 
architectures were designed according to the absence of self-correlation of the error, of the R2 and of the RMSE (Root Mean 
Squared Error) calculated on the out-of-sample test (Bonini et al., 2019). From an architectural point of view, ANNs are composed 
of layers of nodes that contain an input layer, one or more hidden layers and an output layer. In a dense artificial neural network, the 
neurons which belong to the next layer are fully connected with the neurons which are in the current layer. Every connection is 
characterized by a weight associated to the arch which links the two neurons, and every neuron is itself characterized by an 
activation threshold and a further parameter called bias. If the output of any single node of the architecture is above a threshold 
value, this node is activated, sending signals to the next layer of the network. Conversely, if the output is below the threshold value, 
no information is passed to the next layer (Rojas, 1996). Neural networks rely on training data for their training phase and for 
improving their accuracy over time. Once optimized, these learning algorithms are very powerful tools and allow to classify and 
organize data at a very high speed (Fonseca and Lopez, 2017). To understand the working principles of a neural network at an 
elementary level, each single node can be considered as a linear regression model composed of many inputs, many weights, a 
threshold and an output (Freeman and Scapura, 1992).  Once an input level has been determined, the weights are assigned through a 
numerical optimization routine: the greater the weight associated to these hyperparameters, the greater the importance of the signal 
processed by the network. Subsequently, the inputs are multiplied by their respective weights and then added together. Once the 
process is finished, this first output obtained is passed through an activation function which determines a further output; if the output 
exceeds a certain significance threshold of the transfer function, then the node is activated, passing the data to the next level of the  
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network: substantially, the output of one node becomes the input of the next node. This process of passing data from one level to 
another defines this type of neural network as a feedforward network (Caligaris et al., 2015). During the training of the model, one 
of the needs is to evaluate its accuracy, for example through the Mean Squared Error (Chollet, 2018). The goal is therefore to reach 
a convergence point or a local minimum, through a progressive adjustment of the weights included in the algorithm (Principe, 
2000). Neural networks are for the most part feedforward, that is, the signal flows in only one direction from the input to the output. 
However, the model adopts the back-propagation technique during the training, that is, information provided by the minimization of 
the cost function moves in the opposite direction: from output to input. The backpropagation allows to calculate and attribute the 
error associated to each neuron, allowing to appropriately adjust and calibrate the parameters (Rumelhart et al., 1986). It is beyond 
the scope of this article to provide further technical details on the operating principles of a NAR. Interested readers can refer to the 
works mentioned above. 

2) Current and prospective estimation of the Probability of Default using CDS premiums 

Estimating the Probability of Default is of fundamental importance for financial institutions as it provides a summary information 
on the creditworthiness associated with the counterparty. The objective of this section is to analytically explain how to estimate the 
probability of default through CDS premiums and to provide two operational examples of calculation: the first is implemented by 
estimating the default probability at the present valuation time, so-called time 𝑡0, and the second is implemented by calculating the 
same measure, but in a prospective way, that is after a forecasting of the CDS premiums made through dynamic neural networks.  
Given that the CDS is an insurance that hedges the holder from the loss in case of default of the issuer, it can directly measure the 
counterparty risk. As a result, this methodology is often preferred by the market players in comparison to others. In other words, if 
the counterparty in question has listed CDSs, it is preferable to use them for calculating the probability of default as such derivatives 
are expressly aimed at hedging credit risk (Bottasso et al., 2019) through the following formula (Hull, 2015): 𝑃𝐷(𝑇) = 1 − exp(−𝜆̅(𝑇)𝑇) (1) 

Where: 𝑃𝐷(𝑇) is the probability of default before 𝑇; 𝜆̅(𝑇) is the hazard rate 𝑇 is the time to maturity expressed in years; 

The above stated formula can be derived through the theory of probability by proceeding with the following steps. The hazard rate at 
time 𝑡 is defined in such a way that 𝜆(𝑡)𝛥𝑡  is the probability of default between time 𝑡 and time 𝑡 + 𝛥𝑡 conditional on the fact that 
there be no default before. In this sense, SV(𝑡) is the cumulative probability that the company survives at time 𝑡. 

Therefore, the conditional default probability between time 𝑡 and time 𝑡 + 𝛥𝑡 is: 𝑃𝐷(𝑡, 𝑡 + Δ𝑡) = SV(𝑡)−SV(𝑡+𝛥𝑡)SV(𝑡)  (2) 

Since expression (2) is equal to  𝜆(𝑡)𝛥𝑡, then we have:  SV(𝑡+𝛥𝑡)−SV(𝑡)SV(𝑡) = −𝜆(𝑡)𝛥𝑡 (3) 

SV(𝑡+𝛥𝑡)−SV(𝑡)𝛥𝑡 = −𝜆(𝑡)SV(𝑡) (4) 

By setting 𝛥𝑡 → 0 and assuming SV(𝑡) differentiable (i.e., SV ∈ ∁1) 𝑑SV(𝑡)𝑑𝑡 = −𝜆(𝑡)SV(𝑡) (5) 

And by solving the Ordinary Differential Equation for SV(𝑡), the following general solution is obtained: SV(𝑡) = exp [− ∫ 𝜆(𝜏)𝑑𝜏𝑡0 ] (6) 

Defining 𝑃𝐷(𝑡) as the issuer’s probability of default at time t such that 𝑃𝐷(𝑡) = 1 − SV(𝑡) we therefore have: 𝑃𝐷(𝑡) = 1 − exp [− ∫ 𝜆(𝜏)𝑑𝜏𝑡0 ] = 1 − exp[−𝜆̅(𝑡)𝑡] (7) 

Where 𝜆̅(𝑡) is the average hazard rate or, equivalently, the default intensity, between time 0 and time t. 

In the case of the CDS market, the premium can be seen as a direct compensation received by the insurer for the potential event of 
default by the issuer until maturity 𝑡 = 𝑇. This means that the average loss rate between time 0 and time T can be annually 
approximated by the CDS premium 𝑠(𝑇), typically expressed in basis points. 

Assuming now that the average hazard rate during such period is  𝜆̅(𝑇) and taking into consideration that the Recovery Rate (𝑅𝑅) in 

a standard Credit Default Swap is 40% (Giribone et al., 2014), the average loss rate can be expressed by the quantity: 𝜆̅(𝑇)(1 −𝑅𝑅).  This means that the following relationship is reasonably valid: 𝜆̅(𝑇)(1 − 𝑅𝑅) = 𝑠(𝑇) → 𝜆̅(𝑇) = 𝑠(𝑇)(1−𝑅𝑅) (8) 
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2.1) Pre-processing data for the default probability estimation at the current time 

Before calculating the issuer's probability of default, a preliminary analysis of the dataset was necessary in order to verify, and 
potentially correct, the anomalies present in it. As a first step, after retrieving the CDS premiums at different maturities from 
Bloomberg®, Matlab was used to check the data and their consistency. The first check consists in analyzing the homogeneity of the 
dataset by verifying that there are no missing data, or that the CDS premiums are characterized by a daily frequency in the trading 
days considered in the analysis. In the case of anomalies of this kind, the missing values were linearly interpolated. After having 
interpolated any missing data, the various time series were grouped monthly to have a single monthly value for each different CDS 
maturity. To do this, the arithmetic mean of the different CDS Premiums was calculated for each month in order to obtain a dataset 
that is more aligned with the prospective time span of interest. The last check that was implemented, before the actual calculation of 
the probability of default, was the one relating to the presence of any potential outlier in the dataset. To search for such potentially 
odd values, the procedure is as follows: the historical series of the CDS Premiums were grouped two by two in ascending order (i.e., 
first grouping: 6M and 1Y, second grouping: 1Y and 2Y, etc.), then the difference between the different historical series was 
calculated and, on such difference, the mean and the standard deviation were calculated. The final step consists in constructing the 
interval within which the values are expected to fall. If the differences exceed the confidence interval, the premiums of the 
corresponding CDS are interpolated. The procedure can be exemplified with the following logic of preparation of the time series for 
CDS with tenors of six months and one year: 𝐶𝐷𝑆6𝑀 = [𝐶𝐷𝑆6𝑀1, 𝐶𝐷𝑆6𝑀2, … , 𝐶𝐷𝑆6𝑀𝑖 … , 𝐶𝐷𝑆6𝑀𝑛] 
 𝐶𝐷𝑆1𝑌 = [𝐶𝐷𝑆1𝑌1, 𝐶𝐷𝑆1𝑌2 … , , 𝐶𝐷𝑆1𝑌𝑖 , … , 𝐶𝐷𝑆1𝑌𝑛] 
With 𝑖 = 1, … , 𝑛 where 𝑛 is the length of the time series. This procedure has been repeated for each CDS tenor (6M-1Y-2Y-3Y-4Y-
5Y-7Y-10Y).  𝐷1𝑌−6𝑀 = [𝐷1 = 𝐶𝐷𝑆1𝑌1 − 𝐶𝐷𝑆6𝑀1, … , 𝐷𝑖 = 𝐶𝐷𝑆1𝑌𝑖 − 𝐶𝐷𝑆6𝑀𝑖 , … , 𝐷𝑛 = 𝐶𝐷𝑆1𝑌𝑛 − 𝐶𝐷𝑆6𝑀𝑛] 
 𝐷2𝑌−1𝑌 = [𝐷2 = 𝐶𝐷𝑆2𝑌1 − 𝐶𝐷𝑆1𝑌1, … , 𝐷𝑖 = 𝐶𝐷𝑆2𝑌𝑖 − 𝐶𝐷𝑆1𝑌𝑖 , … , 𝐷𝑛 = 𝐶𝐷𝑆2𝑌𝑛 − 𝐶𝐷𝑆1𝑌𝑛] 
This procedure has been repeated for each couple of CDS tenors. 𝜇 = 1𝑛 ∑ 𝐷𝑖𝑛𝑖=1  (9) 

𝜎 = √∑ (𝑛𝑖=1 𝐷𝑖−𝜇)2𝑛  (10) inf = 𝜇 − 3𝜎 sup = 𝜇 + 3𝜎 if ∶  { inf ≤ 𝐷𝑖 ≤ sup → market 𝐶𝐷𝑆 𝑝𝑟𝑒𝑚𝑖𝑢𝑚𝐷𝑖 < inf    or   𝐷𝑖 > 𝑠𝑢𝑝 →  interpolated CDS premium 

Where: 𝐷 is the vector containing the differences of the values contained in the CDS vectors; 𝜇 is the mean of the differences of the values vector; 𝜎 is the standard deviation of the vector; 

inf is the lower extreme of the interval; 

sup is the upper extreme of the interval; 

As a result, the linear interpolation between two contiguous values (i-1 e i+1) of the time series has been carried out only when the 
CDS premiums provided by the market are considered outliers, i.e. they exceed the threshold of their mean ±3 standard deviations. 
Once the control phase on the dataset was completed, the default probability was estimated for the various historical series of the 
CDS according to formula (1). 

2.2) Estimation of the forecasted default probability 

For the calculation of the prospective default probability, it was first necessary to forecast the CDS Premiums for each selected 
maturity. For forecasting purposes, NAR artificial neural networks were used. For each CDS maturity, 27,750 networks (for a total 
of 222,000) were tested in order to select the 8 best networks (one for each CDS reference tenor) for forecasting the data (Table 1). 
The selection of the most performing networks has been conducted only among the models characterized by the absence of auto 

correlation error (Econometric Test) and a good 𝑅2 = 0.95 on validation set (Quality Accuracy). Among these architectures the best 
networks are chosen in accordance with the minimum out-of-sample gap. Table 1 also shows the In-Sample error and the average 
between the In-sample and Out-of-Sample error. This last quantity has been taken into account in the choice of the best network 
when the machine learning model with the lowest out-of-sample errors produced unfeasible forecasts (for example prospective 
negative premiums). 
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Table 1 Architecture of the Best networks: CDS method 

 

After having trained and selected the various best networks, we proceeded with the forecasting of the various CDS Premiums and 
with the calculation of the default probability. 

The figures 𝜏 = {0.5,1,2,3,4,5,7,10} have been estimated, as the year fractions 𝑡 vary and for each tenor provided by the market, the 
corresponding listed spread 𝑠(𝑡, 𝑡 + 𝜏) and the corresponding 𝑃𝐷(𝑡, 𝑡 + 𝜏). 

In particular: 𝑡 = 0 corresponds to the first sampling date, which is 18th June 2008. 𝑡 = 11.84  corresponds to the date on which the network training set ends, that is 29th February 2020. The training set is 
characterized by the black line in Figure 1 both for the spreads,  𝑠(𝑡, 𝑡 + 𝜏) and for the derived probability, 𝑃𝐷(𝑡, 𝑡 + 𝜏). 𝑡 = 12.85 corresponds to the date on which the network test set ends, i.e., 28th February 2021. The test set is characterized by the 
red line in Figure 1 both for the spreads, 𝑠(𝑡, 𝑡 + 𝜏) and for the derived probability, 𝑃𝐷(𝑡, 𝑡 + 𝜏). 

For 𝑡 > 12.85 the forecasting is implemented. Both the predicted values of 𝑠(𝑡, 𝑡 + 𝜏) and the value of 𝑃𝐷(𝑡, 𝑡 + 𝜏); they are 
characterized by the blue line in Figure 1. 

By way of example, the graph shows the premiums of the various CDS with tenor equal to 7 years and the corresponding default 
probability estimated using the CDS method. 

 

 

 

Figure 1 CDS premium (tenor: 7 years) and Default Probability 
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2Y 23 5 9 10 5.448432725 2.17786316 3.81314794

3Y 25 7 10 3 7.080359036 3.85242165 5.46639035

4Y 24 10 10 3 7.665926988 3.82910442 5.74751570

5Y 25 5 4 2 11.01484139 11.19604652 11.10544396

7Y 23 7 10 6 7.294506369 6.95375541 7.12413089

10Y 24 3 8 10 7.411680334 6.04787764 6.72977898
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The further graphs below represent the surfaces of the CDS Premiums and of the Default Probability: the fractions of year are 
represented on the x-axis, the different tenors are represented on the y-axis and the different premiums are on the z-axis (Figure 2) 
and the corresponding implied probabilities (Figure 3). 

 

Figure 2 Observed and Forecasted CDS premium surface 

 

Figure 3 Default Probability surface obtained with the CDS method 

 

3) Current and prospective estimation of the Probability of Default using listed bonds 

The second approach for calculating the Default Probability consists in estimating the Z-Spread and using such figure as a proxy for 
a synthetic CDS premium. The Z-Spread indicates the excess return that a bond must give with respect to the risk-free rate and, 
usually, this yield differential is the compensation for a potential default of the bond issuer (Hull, 2015). 

A clearer explanation of this risk transfer can be provided by considering a portfolio composed as follows: 

A corporate bond with a 5-year maturity and a yield of 5%; 

A long position on a 5-year Credit Default Swap, which has a cost of 250 basis points per year. 

This portfolio is approximately equivalent to a long position in a risk-free instrument offering a rate of return of 2.5% per annum. 
The effect that the CDS has on the composition of the above-mentioned portfolio is to "transform" a risky instrument, such as a 
corporate bond, into a risk-free instrument. This is easily understood from the fact that, if the issuer of the bond does not incur a 
default, the return for the holder of the above-mentioned portfolio is equal to 2.5%, or 5% profit deriving from the corporate bond 
minus 2.5% which is the Credit Default Swap premium.  
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On the other hand, if the issuer were to go bankrupt, the investor would have a profit of 2.5% until the event of default and the full 
notional capital would be repaid thanks to the CDS. Furthermore, this capital can be reinvested at the risk-free rate for the time 
between the default and the maturity of the security. 

In theoretical terms, the spread of a T-year CDS (𝑠), should be equal to the difference, in terms of yield, between a corporate bond 
with a maturity of T-years and a risk-free security with the same maturity. In mathematical terms, this can be expressed as follows: 𝑠𝑇 = 𝑦𝑇 − 𝑟𝑇  (11) 

Where: 𝑠 is the excess spread; 𝑦 is the yield of the corporate bond; 𝑟 is the return on the risk-free security. 𝑇 is the maturity. 

If the above stated would not happen, arbitrage opportunities would arise. 

3.1) Procedural example 

In order to illustrate the calculation of the Z-Spread, a corporate bond issued on 18th May 2020 at a price equal to 99.308 was taken 
into consideration. The bond expires 6 years from the date of issue (18th May 2026) and pays an annual coupon of 1.25%. Based on 
the Moody's rating scale, this bond is rated Baa, which means that it is considered a security with a moderate credit risk. On the day 
our analysis was carried out, i.e., 26th February 2021, the bond’s market price was 105.595. The goal is to price the bond with the 
characteristics listed above. The feature to be evaluated is the spread composed of the part related to liquidity risk plus the credit 
risk, however the bonds suitable for this purpose should be selected among the most liquid securities, which means that the liquidity 
risk can be considered negligible and, therefore, the spread is almost entirely associated with credit risk. In order to understand the 
impact of credit risk, a theoretical valuation model was constructed and, therefore, the bond was first priced at the risk-free rate. The 
zero rates were derived from the term structure of the 6-month Euribor which, typically, in the context of pricing a fixed-income 
instrument, is used as the best proxy for the risk-free rate. The formulation of cash flows is shown in Table 2 

 
 

 Table 2 Risk-free pricing of the corporate bond examined as of 26
th

 February 2021 

 
Where: 

the Payment Dates are the dates on which the coupon of the bond is paid and, at maturity, the repayment of the notional; 

the Year Fractions (YF) are the fractions of the year corresponding to the Payment Dates; 

the Cash Flows (CF) are the cash flows generated by the bond, i.e., the coupons until 18th May 2025 and the Face Amount plus the 
coupon on 18th May 2026; 

regarding the values of the Zero Rate (ZR) they have been interpolated following the corresponding year fractions of the Euribor 
term structure; 

the Adjusted Zero Rate (AZR) is the risk-free rate adjusted according to the Z-Spread (Z); 

the Adjusted Discounted Factor (ADF) is the adjusted discount factor which, in this case, is equal to the discount factor as there is 
no additional spread; 

the Net Present Values (NPV) correspond to the present value of the cash flows; 

the Dirty Price (DP) is the sum of the NPVs including the accrued interest (Accrued Interest); 

Payment

Date

Year

Fraction

Cash

Flows

Zero

Rate

Adjusted

Zero Rate

Adjusted

Discounted Factor

Net Present

Value

18/05/2021 0.222 1.25 -0.516% -0.516% 1.0011487 1.2514359

18/05/2022 1.222 1.25 -0.460% -0.460% 1.0056497 1.2570621

18/05/2023 2.222 1.25 -0.454% -0.454% 1.0101677 1.2627096

18/05/2024 3.222 1.25 -0.407% -0.407% 1.0132148 1.2665185

18/05/2025 4.222 1.25 -0.348% -0.348% 1.0148243 1.2685304

18/05/2026 5.222 101.25 -0.283% -0.283% 1.0148966 102.7582784

Z-Spread 0 Dirty Price 109.0645349

Value Date 26/02/2021 Accrued 0.9726027

Issue Date 18/05/2020 Clean Price 108.0919322
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the Clean Price (CP) is the sum of the NPVs, net of accrual; 

the Valuation Date corresponds to the day on which the pricing of the corporate bond was made; 

the Issue Date corresponds to the day on which the corporate bond was issued. 

With the bond valued in these terms, i.e. at the risk-free rate (which is why the Z-Spread is equal to 0), a value of 108.092 is 
obtained. 

Since the considered corporate bond is a liquid bond, the market provides a contribution which, in this case, is equal to 105.595, 
lower than the result of the theoretical model built above. 

To take creditworthiness into account, the bond should be priced considering a spread. In order to identify the exact value of the Z-
Spread that returns the market value of the corporate bond, the problem should be solved by means of a Goal Seeking method 
programmed in Matlab (Byrd et al., 1994). 

 

 

 

Table 3 Risk-Adjusted pricing of the examined corporate bond as of 26
th

 February 2021 

 
In order to estimate a synthetic term structure of CDS we need to consider several liquid bonds of the same issuer and to repeat the 
calculation for all days in which the market provides a price. Starting from the summary of this term structure of the CDS premiums, 
the Probabilities of Default are obtained with the technique described in the previous section. The 16 bonds selected for the 
considered issuer are shown in Table 4. 
 

 

Table 4 Corporate bonds used for the analysis 
 

In this example as well, the probability of default was calculated both at time zero and prospectively. This required the use of NAR 
neural networks, to implement the various forecasting of the values (de Simon-Martin et al., 2020). 

Payment

Date

Year

Fraction

Cash

Flows

Zero

Rate

Adjusted

Zero Rate

Adjusted

Discounted Factor

Net Present

Value

18/05/2021 0.222 1.25 -0.516% -0.057% 1.0001276 1.2501595

18/05/2022 1.222 1.25 -0.460% -0.001% 1.0000180 1.2500225

18/05/2023 2.222 1.25 -0.454% 0.004% 0.9999053 1.2498817

18/05/2024 3.222 1.25 -0.407% 0.052% 0.9983277 1.2479096

18/05/2025 4.222 1.25 -0.348% 0.111% 0.9953429 1.2441786

18/05/2026 5.222 101.25 -0.283% 0.176% 0.9908704 100.3256296

Z-Spread 45.852 Dirty Price 106.5677815

Value Date 26/02/2021 Accrued 0.9726027

Issue Date 18/05/2020 Clean Price 105.5951788

ID Coupon Maturity Payment Frequency Day Basis

A 2.625 22/11/2021 Annual ACT/ACT

B 0.750 17/05/2022 Annual ACT/ACT

C 3.250 10/07/2023 Annual ACT/ACT

D 1.750 18/01/2024 Annual ACT/ACT

E 0.625 19/09/2024 Annual ACT/ACT

F 1.000 14/03/2025 Annual ACT/ACT

G 3.750 12/09/2025 Annual ACT/ACT

H 1.500 02/02/2026 Annual ACT/ACT

I 1.250 18/05/2026 Annual ACT/ACT

J 1.500 17/01/2027 Annual ACT/ACT

K 1.625 17/05/2028 Annual ACT/ACT

L 1.125 19/09/2028 Annual ACT/ACT

M 3.625 29/01/2029 Annual ACT/ACT

N 0.625 23/01/2030 Annual ACT/ACT

O 2.000 18/05/2031 Annual ACT/ACT

P 1.000 11/10/2034 Annual ACT/ACT
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Therefore, 27,750 different network architectures were tested for each single bond, for a total of 440,000, in order to select the 16 
best networks used for forecasting the different Z-Spreads, whose architecture is shown in Table 5. 

The criteria used for the selection of the most performing networks remain the same that we have previously described for Table 1. 

 

 

Table 5 Architecture of the Best networks: Z-spread method 

 

By way of example, the graph of bond O is shown in Figure 4, in which, in the upper part, the different time series used and the 
respective forecasting of the synthetic CDS premiums are shown and, in the lower part, a detail of the forecasting and the last 44 
observed values. 

 

Figure 4 Training / Validation and Forecasting for Bond with ID: O 

 

Once all the necessary forecasting for the prospective estimate of the default probability had been implemented, a further step was 
required which is not present in the operational example of the Credit Default Swaps. In fact, each single bond is characterized by its 
own time to maturity (as shown in Table 4). 

Quality Accuracy

≥0.95

Bond
Number 

of Delays

Neurons

(First Layer)

Neurons

(Second Layer)

Neurons

(Third Layer)
In Sample RMSE

Out Sample 

RMSE

MEAN IN SAMPLE AND 

OUT SAMPLE RMSE

A 17 9 9 5 1.525955908 0.65624776 1.09110183

B 17 8 7 1 1.387777305 0.63832195 1.01304963

C 11 1 4 2 1.665444521 0.88516771 1.27530612

D 16 8 8 4 1.720082629 0.59825059 1.15916661

E 18 9 7 5 1.587440954 0.63539117 1.11141606

F 18 9 5 6 1.68540112 0.63272568 1.15906340

G 16 8 7 8 1.756757209 0.71813277 1.24244499

H 12 8 5 8 2.071197384 0.59747441 1.33433590

I 19 10 10 8 0.76682641 0.56315685 0.66499163

J 12 6 10 6 1.029262298 0.87700847 0.95313538

K 3 8 1 1 1.359849175 0.93094883 1.14540900

L 19 10 3 9 1.722871502 0.72863780 1.22575465

M 9 8 9 8 2.243363579 0.78521178 1.51428768

N 17 10 8 10 1.426791275 0.61658974 1.02169051

O 20 9 6 9 0.754451999 0.47453179 0.61449190

P 18 8 2 2 1.099202997 0.58227227 0.84073763

Econometric Test

(Boolean)

TRUE

Non Linear Auto Regressive

Best Networks
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It was thus necessary to regularize the Z-Spreads for the standard market tenors, that is: 6 months, 1 year, 2 years, 3 years and so on 
up to 12 years. Therefore, for each single day, the synthetic spread corresponding to each standard tenor of the term structure was 
interpolated across the bonds. 

At this point, following this standardization procedure, the problem to be solved becomes like the case of the CDS. 

The surfaces shown in Figures 5 and 6 show a summary of the results obtained. 

 

 

 Figure 5 Surface of the implicit spreads on the analyzed bonds 

 

 

Figure 6 Default Probability surface obtained with the Z-spread method 

 

4) Current and prospective estimation of the Probability of Default using the KMV method 

If the company in question does not have listed Credit Default Swaps or listed corporate bonds on the markets, the KMV model 
(Kealhofer, Merton and Vasicek) can be used to estimate the probability of default (Bharath and Shumway, 2004). 

KMV is a structural model usually implemented in credit risk management and many different versions of this model were 
successfully implemented (Agosto & Moretto, 2012). Its application is suggested in the estimation of the counterparty risk when 
market data are not available and the main source of information for the corporate analysis is the balance sheet. As a result, this 
approach is not suitable for a short-term forecasting (𝑇 < 1). 
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The KMV method is based on the equity price and on the balance sheet of the company in question. The assumptions underlying the 
Merton model can be divided into the following 4 sections: 

The Debt is homogeneous and has a time to maturity equal to T; 

The capital structure of the company in question is given by debt and equity. Consequently, it is true that: 𝑉𝐴(𝑡) = 𝐷(𝑡) + 𝑉𝐸(𝑡), 
where: 𝑉𝐴(𝑡) is the value of the assets at time t, 𝐷(𝑡) is the debt to be repaid and 𝑉𝐸(𝑡) is the value of the company’s equity at time 
t; 

The model assumes that value of the firm assets follows a Brownian geometric motion of the following type:  𝑑𝑉𝐴 = 𝜇𝐴𝑉𝐴𝑑𝑡 +𝜎𝐴𝑉𝐴𝑑𝑊𝑡, where: 𝜇𝐴 is the expected instantaneous rate of return, 𝜎𝐴 is the volatility and 𝑑𝑊𝑡 is a Wiener process; 

The hypothesis of perfect markets applies: there are no taxes; there are no restrictions on short selling; the market is completely 
liquid, i.e. investors can buy and sell any asset at market price; sellers and buyers have the same as risk free rate and such interest 
rate is constant over the reference time span. 

Based on the previous assumptions, Robert Cox Merton proposed, in 1974, a model where a company’s equity is an option on the 
assets of the company. Based on the structural model proposed (Merton, 1974), if 𝑉𝐴(𝑇) < 𝐷 it is likely, at least in theory, that the 
company surely defaults at time 𝑇; in this case the equity at time T is equal to 0 (𝑉𝐸(𝑇) = 0). Likewise, if 𝑉𝐴(𝑇) > 𝐷, then the 
company in question should repay its debt at time T and, in this case, the value of the equity at that same time will be equal to: 𝑉𝐸(𝑇) = 𝑉𝐴(𝑇) − 𝐷. In strictly mathematical terms, the amount of the company's equity at time T is given by the following pay-off: 𝑉𝐸(𝑇) = max(𝑉𝐴(𝑇) − 𝐷, 0) (12) 

Given the previous statement, the analogy with a European-type option is clear: the value of the equity is similar to the payoff of a 
call option on the value of the assets with a strike price equal to the payment requested on the debt. 

Under the assumptions of this model, the traditional Black-Scholes-Merton (BSM) model for option pricing (Black and Scholes, 
1973) can be applied and, consequently, the following equations are valid: 𝑉𝐸(𝑡) = 𝑉𝐴(𝑡)𝜙(𝑑1) − exp(−𝑟(𝑇 − 𝑡)) 𝐷𝜙(𝑑2) (13) 

𝑑1 = ln (𝑉𝐴(𝑡)𝐷 ) + (𝑟 − 12 𝜎𝐴2) (𝑇 − 𝑡)𝜎𝐴√𝑇 − 𝑡  

𝑑2 = 𝑑1 − 𝜎𝐴√𝑇 − 𝑡 

Where: 𝑇 is the time when the valuation is made; 𝜎𝐴 is the asset volatility; 𝑟 is the risk-free rate at time 𝑇;  𝑉𝐴(0) − 𝑉𝐸(0) is the value of the debt at time 0; 𝜙(−𝑑2) is the risk neutral probability that the company will default on its debt at maturity 𝑇. 

However, in order to calculate the default probability 𝜙(−𝑑2), a further relationship is necessary since there are two unknown 
parameters in the above equations, namely the value and the volatility of the assets (respectively: 𝑉𝐴 and 𝜎𝐴). The other variables of 
the model are, on the other hand, directly observable or calculable: the risk-free rate (𝑟) can be selected by referring to the Euribor 

term structure; the value of the debt (𝐷) is directly observable from the financial statements of the company in question; the equity 
value (𝑉𝐸) can be calculated by multiplying the number of shares of the company by their unitary market value; the volatility of the 
equity (𝜎𝐸) can be calculated using the implied volatility or through a traditional backward looking econometric approach such as 
the GARCH. Applying Ito's lemma, the stochastic dynamics that regulate the behavior of 𝑉𝐸:  𝑑𝑉𝐸 = 𝜇𝐸𝑉𝐸𝑑𝑡 + 𝜎𝐸𝑉𝐸𝑑𝑊𝑡 (14) 

can be re-written as: 𝑑𝑉𝐸 = (12 𝜎𝐴2𝑉𝐴2 𝜕2𝑉𝐸𝜕𝑉𝐴2 + 𝜇𝐴𝑉𝐴 𝜕𝑉𝐸𝜕𝑉𝐴 + 𝜕𝑉𝐸𝜕𝑡 ) 𝑑𝑡 + 𝜎𝐴𝑉𝐴 𝜕𝑉𝐸𝜕𝑉𝐴 𝑑𝑊𝑡 (15) 

By comparing the terms of equations (14) and (15) we can derive the following relationship: 𝜎𝐸𝑉𝐸 = 𝜎𝐴𝑉𝐴 𝜕𝑉𝐸𝜕𝑉𝐴 (16) 

Following the theory of the Black-Scholes-Merton model, the term 
𝜕𝑉𝐸𝜕𝑉𝐴 corresponds to one of the so-called Greeks of a European 

option, in particular it corresponds to the sensitivity measure defined as Delta (Δ𝐸), and it is equal to: 𝜙(𝑑1). 
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At this point, to obtain the unobserved values of 𝑉𝐴 and 𝜎𝐴, the following non-linear system of two equations and two unknowns has 
to be solved: 

{𝑓1(𝑉𝐸 , 𝜎𝐸) = 𝑉𝐴𝜙(𝑑1) − exp(−𝑟(𝑇 − 𝑡)) 𝐷𝜙(𝑑2) − 𝑉𝐸 = 0𝑓2(𝑉𝐸 , 𝜎𝐸) = 𝑉𝐴𝑉𝐸 𝜙(𝑑1)𝜎𝐴 − 𝜎𝐸 = 0    (17) 

With 
𝜕𝑓1𝜕𝑉𝐴 = 𝜙(𝑑1) > 0 

This is because, just like the Delta in the BSM model framework, 𝑓1 is an increasing function of 𝑉𝐴 and this implies that 𝑓1(𝑉𝐴) only 
has one solution. For the same reason, 𝑓2 also has a unique solution.  

Once the previous non-linear system has been solved numerically with Matlab, all the necessary data to calculate the default 
probability using 𝜙(−𝑑2) are available: 

𝐷𝐷 = 𝑑2 = 𝑑1 − 𝜎𝐴√𝑇 = ln(𝑉𝐴𝐷 )+(𝑟−12𝜎𝐴2)(𝑇)𝜎𝐴√𝑇   (18) 

The term 𝑑2 within this model is often indicated with the term Distance to Default (𝐷𝐷).  

Considering now that the assets follow a Brownian geometric motion and, consequently, 𝑉𝐴(𝑡) is distributed as a log-normal with an 
expected value at time 𝑡 equal to: 𝑉𝐴(𝑡) = 𝑉𝐴exp {(𝑟 − 12 𝜎𝐴2) (𝑇 − 𝑡) + 𝜎𝐴𝑊𝑇−𝑡} (19) 

 We can state that the default probability, 𝑃𝐷(𝑇 − 𝑡), for 𝑡 = 0 can be calculated as follows (Löffler and Posch, 2011): 𝑃𝐷(𝑇) = Pr[𝑉𝐴(𝑇) < 𝐷] = Pr [𝑉𝐴exp {(𝑟 − 12 𝜎𝐴2) 𝑇 + 𝜎𝐴𝑊𝑇} < 𝐷] = (20) 

= Pr [𝑊𝑇 < ln ( 𝐷𝑉𝐴) − (𝑟 − 𝜎𝐴22 𝑇)𝜎𝐴 ] = Pr [𝑍 < ln ( 𝐷𝑉𝐴) − (𝑟 − 𝜎𝐴22 𝑇)𝜎𝐴√𝑇 ] = 

= Pr [𝑍 < − ln (𝑉𝐴𝐷 ) + (𝑟 − 𝜎𝐴22 𝑇)𝜎𝐴√𝑇 ] = Pr[𝑍 < −𝐷𝐷] = 𝜙(−𝐷𝐷) 

4.1) Procedural example 

Two operational examples of default probability calculation will be conducted using the KMV method. The first consists in 
calculating the measure of the default probability at time 0, that is taking as reference data those of the latest available financial 
statements of one of the main Italian energy companies, which is 31st December 2020, at the date of preparation of this paper. 

Once all necessary data have been found from Bloomberg®, the issuer's default probability is calculated following the procedure 
illustrated in the previous section. 

The second operational example consists in the calculation of the prospective default probability using different methodologies for 
forecasting data and for modeling the other parameters required for the calculation of the relevant figures. 

The equity value was calculated by multiplying the stock price as of 31st December 2020 by the number of company shares on the 
same date, obtaining the data from Bloomberg®. The share price was 8.548, the number of shares in the company was 
3,572,550,000 and, consequently, the equity value was equal to: 𝑉𝐸 = 8.548 × 3,572,550,000 = 30,538,157,400 euros. 

As regards the amount of debt, it is always obtained from the balance sheet and here it is equal to 31,704,000,000. 

The term structure of the risk-free rate with tenor equal to 6 months (Euribor 6M) was used as the value for the risk-free rate and the 
value of the zero rate at one year is equal to -0.533%. 

The last parameter required in order to set up the system of equations (17) is the volatility of the equity. This was estimated at 
53.58% using the close-to-close method based on the daily returns of the share recorded in the past year and annualized with a factor 
of 252, i.e., the number of trading days within the considered year. (Haug, 2010). 

Table 6 displays a summary of the results obtained 

 

 

Table 6 Estimation of the current default probability using the KMV method 

Parameters VE D sigma E r (RISK FREE RATE) STOCK PRICE NUM. OUTSTANDING FIRM VALUE (VA) ASSET SIGMA (SIGMA A)

Values in Millions of Euro 30,538.16 31,704.00 53.58% -0.533% 8.548 3,572.55 62,385.93 26.32%

Default Probability 0.00775627%
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As a second step, the objective is to estimate the prospective default probability. In order to obtain this figure, we need to investigate 
which is the most reasonable technique to use to determine the behavior of the input data of the one-year model. 

Regarding the value of the equity, the number of shares was assumed to be constant during the following year and the prediction of 
the share price was obtained through NAR. In order to project the value of the debt into the relevant time span, we assumed that it 
follows a Log-Normal distribution. According to this assumption, the percentage change in the value of the debt over a very short 
time span is normally distributed. Defining as: 𝜇𝐷 the expected value of returns over a year 𝜎𝐷 the volatility of the share price over a year. 

The mean and the standard deviation over a time period of 𝛥𝑡 are approximately 𝜇𝐷𝛥𝑡 and 𝜎𝐷√𝛥𝑡. Thus, we can state that: 𝛥𝐷𝐷 ~𝜙(𝜇𝐷𝛥𝑡, 𝜎𝐷2𝛥𝑡) (21) 

Where: 𝛥𝐷 is the change in the value of debt over a period of time 𝛥𝑡, and 𝜙(𝑚, 𝑣) denotes a normal distribution with mean equal 
to 𝑚 and variance equal to 𝑣.  

The BSM model implies that: ln 𝐷𝑇 − ln 𝐷0 ~𝜙 [(𝜇𝐷 − 𝜎𝐷22 ) 𝑇, 𝜎𝐷2𝑇] 

ln 𝐷𝑇𝐷0 ~𝜙 [(𝜇𝐷 − 𝜎𝐷22 ) 𝑇, 𝜎𝐷2𝑇] 

ln 𝐷𝑇~𝜙 [ln 𝐷0 + (𝜇𝐷 − 𝜎𝐷22 ) 𝑇, 𝜎𝐷2𝑇] (22) 

Where 𝐷𝑇  is the value of the debt at a future time 𝑇 and 𝐷0 is the value of the debt at time 0. From this, we can conclude that the 

variable ln 𝐷𝑇  is normally distributed and consequently, 𝐷𝑇  is log-normally distributed. The mean of ln 𝐷𝑇  is: ln 𝐷0 + (𝜇𝐷 − 𝜎𝐷22 ) 𝑇 

and the standard deviation is: 𝜎𝐷√𝑇. 

Three different scenarios were constructed: the best scenario with a confidence level of 50%, the average scenario with a confidence 
level of 75% and the worst scenario with a confidence level of 99%. Table 7 shows different scenarios constructed for the forecasted 
estimation of the debt. 

 

Table 7 Debt simulation scenarios 

To obtain a prospective estimate of the capital volatility (𝜎𝐸), we proceeded using a GARCH (1,1) to model such value. However, 
before proceeding with the use of this econometric model, a statistical test was preliminarily used, the Ljung-Box Q-Test, to verify 
the presence of heteroskedasticity in the relevant historical series, i.e. the time series of the stock prices. (Tsay, 2010). 

The Ljung-Box Q-Test (Ljung and Box, 1978) is defined as follows 𝐻0: the data are independently distributed (i.e., the correlations, 𝜌 in the population from which the sample is taken are 0, so that any 
observed correlations in the data result from randomness of the sampling process). In mathematical terms 𝜌1 = 𝜌2 = ⋯ = 𝜌𝑛 = 0  𝐻𝑎: the data are not independently distributed; they exhibit serial correlation. 

The test statistics is: 𝑄 = 𝑁(𝑁 + 2) ∑ 𝜌̂𝑘2𝑁−𝑘ℎ𝑘=1  (23) 

Where 𝑁 is the sample size, 𝜌̂𝑘 is the sample autocorrelation at lag 𝑘 and ℎ is the number of lags being tested. Under 𝐻0 the statistic  𝑄 asymptotically follows a 𝜒(ℎ)2  

The econometric test applied on the residuals of the time series indicates that the evidence is insufficient to reject the null hypothesis 
of no residual autocorrelation through 20 lags, consequently it is reasonable to use a GARCH type model. 

CONFIDENCE

LEVEL
Z

DEBT

(LOWER BOUND)

DEBT

(UPPER BOUND)

50.00% 0.0100 32629.41 32695.94

60.00% 0.2500 31841.50 33504.99

75.00% 0.6745 30494.18 34985.33

95.00% 1.9600 26752.03 39879.18

99.00% 2.5760 25125.22 42461.28
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The GARCH (Generalized AutoRegressive Conditional Heteroschedasticity) is a model of generalized auto regressive conditioned 
heteroskedasticity presented by (Bollerslev, 1986). The more general expression of the GARCH(p,q) model however evaluates the 𝜎𝑛2 starting from the 𝑝 observations of 𝑢2 and from the most current estimates of the variance rate q. The GARCH (p, q) formula can 
be generalized as follows: 𝜎𝑛2 = 𝛾𝑉𝐿 + ∑ 𝛼𝑖𝑢𝑛−𝑖2 + ∑ 𝛽𝑖𝜎𝑛−𝑖2𝑝𝑖=1𝑞𝑖=1  (24) 

It should be emphasized that, by setting p = 0, the result obtained is the expression of the ARCH (q). By setting 𝜔 = 𝑉𝐿𝛾 in the 
GARCH equation, the estimation model can be rewritten as follows: 

 𝜎𝑛2 = 𝜔 + ∑ 𝛼𝑖𝑢𝑛−𝑖2 + ∑ 𝛽𝑖𝜎𝑛−𝑖2𝑝𝑖=1𝑞𝑖=1  (25) 

The above expression is generally used in order to estimate the parameters since, once 𝜔, 𝛼 and 𝛽 are known, we can calculate 𝛾 as 

a difference: 𝛾 = 1 − 𝛼 − 𝛽. The Long-Term Variance, on the other hand, is equal to the ratio:  
𝜔𝛾 .  

The equation representing the GARCH (1,1) is the following: 𝜎𝑛2 = 𝛾𝑉𝐿 + 𝛼𝑢𝑛−12 + 𝛽𝜎𝑛−12  (26) 

Where 𝑉𝐿 is the long-term variance. 

A fundamental condition is given by the fact that the sum of the weights must be equal to one: 𝛼 + 𝛽 + 𝛾 = 1.  The parameters (1,1) 

of GARCH (1,1) indicate that the calculation of 𝜎𝑛2 is focused on the most recent observation of the 𝑢2 and on the closest estimate of 
the variance rate. It is required that 𝛼 + 𝛽 < 1 since, otherwise, the weight assigned to the Long-Term Variance would become 
negative. The model described here recognizes that, over time, the variance tends to converge towards a long-term average level 
(𝑉𝐿) with an associated weight equal to  𝛾 = 1 − 𝛼 − 𝛽. The final stage, for the realization of the GARCH (1,1) model, is the 
estimation of the required parameters starting from the historical price series. The most common method for estimating them is that 
of the maximum likelihood estimation, MLE (Maximum Likelihood Estimation). The first step for the estimation of the model 

parameters consists of defining the estimated variance for day 𝑖 as: 𝑣𝑖 = 𝜎2 and assume that 𝑢𝑖 follows a normal conditional 
probability distribution. The maximum likelihood function (L) to be maximized with respect to the model parameters is given by 
(Francq and Zakoian, 2010): 

𝐿 = ∏ 1√2𝜋𝑣𝑖 exp (− 𝑢𝑖22𝑣𝑖)𝑚
𝑖=1  

Applying the logarithm to the previous equation, the maximum points of the function do not change, but the calculations are 
simplified: 𝐿 = ∑ [− ln(𝑣𝑖) − 𝑢𝑖2𝑣𝑖 ] = ∑ 𝐿𝑖𝑚𝑖=1𝑚𝑖=1  (27) 

The parameters that allow the maximization of 𝐿 were found using a gradient descent algorithm (Byrd et al., 1994) programmed in 
Matlab around the optimum zone (Figure 7). 

 
 

Figure 7 The detail of the surface of the Log-Likelihood Function around the optimum zone 
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Figure 8 shows the term structure of the volatility calculated from these, in accordance with the equation (Hull, 2015): 

 𝜎(𝑇) = √252 (𝑉𝐿 + 1−exp(−𝑎𝑇)𝑎𝑇 [𝑉(0) − 𝑉𝐿]) (28) 

 

 

 

Figure 8 The term structure of the volatility estimated by GARCH (1,1) 
 

As regards the rates used for the calculation of the prospective default probability, they were chosen by calculating the forward rate 

between 1 year and 2 years (𝐹1𝑌,2𝑌) and the zero rates (𝑟0𝑌,1𝑌 and  𝑟0𝑌,2𝑌) implied by the term structure of the 6-month Euribor at the 

date of analysis: 
 𝐹1𝑌,2𝑌 = (1+𝑟0𝑌,2𝑌)2(1+𝑟0𝑌,1𝑌) − 1 = (1−0.00524)2(1−0.00533) − 1 = −0.515% (29) 

 

Once all the future estimates of the parameters required for the application of the KMV model were obtained, they were used for the 
estimate of the prospective default probability following the same procedure. 

Table 8 shows the results obtained in calculating the relevant figure for the three different debt scenarios previously described. 

 

 

 

Table 8 Forecasted default probability using the KMV method 

Parameters Best Scenario Average Scenario Worst Scenario

VE

D 32,695.94 34,985.33 42,461.28

sigma E

r  (RISK FREE RATE )

STOCK PRICE

NUM. OUTSTANDING

FIRM VALUE (VA) 62,888.24 65,189.41 72,707.77

ASSET SIGMA (SIGMA A) 17.28% 16.67% 14.95%

Default Probability 0.01215340% 0.01476090% 0.02425420%

TIME 1 VALUES (31/12/2022) - Values in Millions of Euro

30,023.71

36.19%

-0.515%

8.404

3,572.55
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5) Applications of the previous methodologies on the companies included in the EuroStoxx 50 
 
The goal of this section is to apply the analyzed methodologies to the companies making up one of the most famous European 
indices: the Euro Stoxx 50 (SX5E Index) in order to calculate, for each of them, the default probability at time 0 and the same figure 
as a forecasted value. 

For each of the companies included in the reference index, the more appropriate forecasting technique has been selected. 

For the calculation of the Probability of Default, the hierarchical principle previously discussed in this report was followed, namely: 
in the presence of Credit Default Swaps listed on the market, the method used will be that of the CDS; if there are no listed CDSs, 
but there are corporate bonds listed on the markets, the methodology used will be that of the Z-Spread and finally, in the absence of 
listed CDS or corporate bonds, the methodology will be that of the KMV. 

Tables 9 and 10 show all 50 companies in the index with a progressive ID aimed at identifying them easily later and, in the last 
column, the forecasting technique that was used to obtain the Default Probability. 

In particular, number 1 indicates that the methodology used will be that of the CDS, number 2 indicates that the methodology will 
be that of the Z-Spread and, finally, number 3 indicates that the methodology will be that of the KMV. 

 

 

 

Table 9 Companies belonging to the Euro Stoxx 50 index at the analysis date - first part 

 

ID
Ticker

(Bloomberg)
Name

Stock Price

(30/06/2021)

Forecasting

Technique

01 OR FP Equity L'Oreal SA 375.80 3

02 DG FP Equity Vinci SA 89.99 1

03 ASML NA Equity ASML Holding NV 579.40 2

04 SAN SQ Equity Banco Santander SA 3.22 1

05 PHIA NA Equity Koninklijke Philips NV 41.79 1

06 TTE FP Equity TotalEnergies SE 38.16 1

07 AI FP Equity Air Liquide SA 147.66 1

08 CS FP Equity AXA SA 21.39 1

09 BNP FP Equity BNP Paribas SA 52.87 1

10 BN FP Equity Danone SA 59.37 1

11 EL FP Equity EssilorLuxottica SA 155.64 3

12 VIV FP Equity Vivendi SE 28.33 1

13 MC FP Equity LVMH Moet Hennessy Louis Vuitton SE 661.30 1

14 KER FP Equity Kering SA 737.00 1

15 AMS SQ Equity Amadeus IT Group SA 59.32 3

16 SAF FP Equity Safran SA 116.92 3

17 AD NA Equity Koninklijke Ahold Delhaize NV 25.07 1

18 IBE SQ Equity Iberdrola SA 10.28 1

19 INGA NA Equity ING Groep NV 11.14 1

20 LIN GY Equity Linde PLC 243.35 2

21 PRX NA Equity Prosus NV 82.47 3

22 ITX SQ Equity Industria de Diseno Textil SA 29.71 3

23 KNEBV FH Equity Kone Oyj 68.80 3

24 FLTR ID Equity Flutter Entertainment PLC 152.70 3

25 ISP IM Equity Intesa Sanpaolo SpA 2.33 1

SX5E INDEX

FORECASTING TECHNIQUE: 1 (CDS METHOD) / 2 (Z-SPREAD METHOD) / 3 (KMV METHOD)
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Table 10 Companies belonging to the Euro Stoxx 50 index at the analysis date - second part 

 

In the following three sub-sections, the relevant figure, i.e. the Default Probability, will be calculated for each of the companies 
included in the index as of 30th June 2021. 

5.1) Use of the CDS method 

For each of the individual companies the Default Probability was calculated at time 0 and prospectively. To calculate the relevant 
forecasted figure, it was necessary, as seen before, to use artificial neural networks to forecast the CDS premiums.  

NARs and the network training methodology already described were used. The only difference is the fact that the range in which to 
look for the best network architecture has been reduced. In the search for the best network, the number of Lags was varied from 1 to 
15, the number of neurons in the first layer from 1 to 20, the number of neurons in the second layer from 0 to 20 and the third layer 
was not considered, thus leaving the number of neurons constant at 0. 

The reason for this change in the search for the best network is the aim at reducing the computational time taken by the machine to 
select the best network. 

Table 11 displays the result of applying the CDS method to the SX5E Index companies. 

In particular, the following figures are shown: the Default Probability at time 0, the Forecasted Default Probability, and the 
architecture of the best network used for forecasting. 

 

ID
Ticker

(Bloomberg)
Name

Stock Price

(30/06/2021)

Forecasting

Technique

26 ENI IM Equity Eni SpA 10.27 1

27 ENGI FP Equity Engie SA 11.55 1

28 ABI BB Equity Anheuser-Busch InBev SA/NV 60.81 1

29 ADYEN NA Equity Adyen NV 2060.50 3

30 SAN FP Equity Sanofi 88.36 1

31 ENEL IM Equity Enel SpA 7.83 1

32 IFX GY Equity Infineon Technologies AG 33.82 2

33 SU FP Equity Schneider Electric SE 132.68 3

34 ALV GY Equity Allianz SE 210.30 1

35 AIR FP Equity Airbus SE 108.44 1

36 BAYN GY Equity Bayer AG 51.21 1

37 BMW GY Equity Bayerische Motoren Werke AG 89.31 1

38 CRH ID Equity CRH PLC 42.50 2

39 BAS GY Equity BASF SE 66.44 1

40 SIE GY Equity Siemens AG 133.62 1

41 VOW3 GY Equity Volkswagen AG 211.20 1

42 MUV2 GY Equity Munich Re 230.95 1

43 SAP GY Equity SAP SE 118.84 2

44 RI FP Equity Pernod Ricard SA 187.20 1

45 ADS GY Equity Adidas AG 313.90 3

46 DTE GY Equity Deutsche Telekom AG 17.81 1

47 DPW GY Equity Deutsche Post AG 57.36 1

48 DAI GY Equity Daimler AG 75.30 1

49 DB1 GY Equity Deutsche Boerse AG 147.20 2

50 VNA GY Equity Vonovia SE 54.52 2

SX5E INDEX

FORECASTING TECHNIQUE: 1 (CDS METHOD) / 2 (Z-SPREAD METHOD) / 3 (KMV METHOD)
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Table 11 Application of the current and prospective version of the CDS method on the SX5E Index 
 

5.2) Use of the Z-Spread method 

The companies included in the index, for which Credit Default Swaps are not available, but listed corporate bonds are available, are 
considered here. In this case, as before, the Default Probability was also both calculated at time 0 and forecasted.  In order to 
calculate the forecasted measure, in this operational example it was also necessary to carry out a forecasting of the Z-spreads using 
the NARs. The procedure followed to search for the best networks is completely similar to the one we already discussed. Table 12 
shows the result of the application of the Z-Spread method on the index companies which do not have listed CDSs on the markets 
but do have listed corporate bonds both at time 0 and prospectively, as well as the architecture of the best network used to the 
different forecasts. 

5.3) Use of the KMV method 

Lastly, we considered the companies in the index which do not have either listed Credit Default Swaps or listed corporate bonds, 
therefore the available balance sheet data has been used for calculating the probability of default using the KMV method has been 
used. To calculate the forecasted figure, it was necessary to use the different methods described in section 4.1 to obtain the requested 
forecasted values. In particular, the neural networks were used for the forecasting of the different stock prices in order to calculate 
the forecasted equity value (𝑉𝐸), the Log-Normal distribution was used to estimate the different forecasted debt scenarios and finally 
a GARCH (1,1) was used to obtain the forecasted value of the capital volatility (𝜎𝐸). Table 13 shows the result of applying the 
KMV method. In this case, the various Default Probabilities have not been included as the values obtained are extremely low, in line 
with the checks carried out with the DRSK risk assessment module available on Bloomberg®. The values highlighted in the table 
are instead the number of shares of the company, the value of the share (at time 0 and forecasted), the value of the equity (at time 0 

and forecasted), the value of the debt at time 0 and the 3 different prospective scenarios, the value of the capital volatility (𝜎𝐸) at 
time zero and the same forecasted value obtained with the GARCH (1,1) (also highlighting the parameters 𝛼, 𝛽 and 𝜔 of the 
GARCH), the value of the assets (𝑉𝐴) at time 0 and in the three envisaged scenarios and, finally, the value of the asset volatility (𝜎𝐴) at time 0 and in the 3 different scenarios. 

ID
Ticker

(Bloomberg)
Name

Time 0

Default 

Probability

Forecasted

Default 

Probability

Best Network

[Lag; 1st Layer; 2nd Layer; 3rd Layer]

02 DG FP Equity Vinci SA 0.00141566 0.00181783 [12; 8; 11; 0]

04 SAN SQ Equity Banco Santander SA 0.00167316 0.00071439 [15; 17; 6; 0]

05 PHIA NA Equity Koninklijke Philips NV 0.00099950 0.00105345 [6; 13; 6; 0]

06 TTE FP Equity TotalEnergies SE 0.00141566 0.00131872 [2; 9; 8; 0]

07 AI FP Equity Air Liquide SA 0.00108275 0.00121097 [11; 8; 6; 0]

08 CS FP Equity AXA SA 0.00167491 0.00161944 [2; 17; 17; 0]

09 BNP FP Equity BNP Paribas SA 0.00230348 0.00281530 [4; 9; 0; 0]

10 BN FP Equity Danone SA 0.00154048 0.00179698 [14; 12; 5; 0]

12 VIV FP Equity Vivendi SE 0.00309137 0.00407886 [12; 3; 18; 0]

13 MC FP Equity LVMH Moet Hennessy Louis Vuitton SE 0.00149472 0.00126877 [9; 9; 13; 0]

14 KER FP Equity Kering SA 0.00140343 0.00400380 [14; 13; 4; 0]

17 AD NA Equity Koninklijke Ahold Delhaize NV 0.00156544 0.00698189 [14; 8; 6; 0]

18 IBE SQ Equity Iberdrola SA 0.00204525 0.00185069 [5; 18; 9; 0]

19 INGA NA Equity ING Groep NV 0.00238968 0.00488713 [10; 20; 19; 0]

25 ISP IM Equity Intesa Sanpaolo SpA 0.00456957 0.00452180 [5; 6; 12; 0]

26 ENI IM Equity Eni SpA 0.00248554 0.00190261 [9; 12; 10; 0]

27 ENGI FP Equity Engie SA 0.00221837 0.00325333 [7; 12; 7; 0]

28 ABI BB Equity Anheuser-Busch InBev SA/NV 0.00388259 0.00240518 [10; 7; 19; 0]

30 SAN FP Equity Sanofi 0.00106194 0.00277703 [12; 15; 12; 0]

31 ENEL IM Equity Enel SpA 0.00218133 0.00243555 [13; 6; 4; 0]

34 ALV GY Equity Allianz SE 0.00121505 0.00167887 [4; 8; 15; 0]

35 AIR FP Equity Airbus SE 0.00288598 0.00137127 [3; 13; 17; 0]

36 BAYN GY Equity Bayer AG 0.00262911 0.00249248 [9; 20; 16; 0]

37 BMW GY Equity Bayerische Motoren Werke AG 0.00178762 0.00315165 [14; 14; 11; 0]

39 BAS GY Equity BASF SE 0.00135703 0.00215369 [11; 2; 20; 0]

40 SIE GY Equity Siemens AG 0.00166906 0.00146033 [6; 13; 5; 0]

41 VOW3 GY Equity Volkswagen AG 0.00317865 0.00237291 [10; 20; 8; 0]

42 MUV2 GY Equity Munich Re 0.00132675 0.00200233 [14; 13; 13; 0]

44 RI FP Equity Pernod Ricard SA 0.00151779 0.00068621 [14; 19; 0; 0]

46 DTE GY Equity Deutsche Telekom AG 0.00205281 0.00224608 [14; 17; 5; 0]

47 DPW GY Equity Deutsche Post AG 0.00091625 0.00248906 [13; 9; 18; 0]

48 DAI GY Equity Daimler AG 0.00237785 0.00044437 [8; 15; 18; 0]

SX5E INDEX

METHOD 1 - CDS METHOD
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Table 12 Application of the current and prospective version of the Z-spreads method on the SX5E Index 

 

 
 

Table 13 Application of the KMV method in current and prospective version on the SX5E Index 

 

6) Conclusions 

The present paper illustrates the application of three different methods for estimating the Default Probability as a measure of the 
counterparty risk: the CDS method, the Z-Spread method and the KMV method (Kealhofer, Merton and Vasicek). 

All the above-mentioned methodologies have been validated both by following the reference scientific literature and by means of 
the calculation modules made available by one of the main information providers used by professionals in the sector, including the 
YAS, DRSK and CDSW modules of Bloomberg®. 

As already extensively discussed, this figure was estimated both at the current level, using the market data observed at the time of 
valuation (𝑡0), and as a forecasted measure, using simulations on the model's inputs to this end. 

ID
Ticker

(Bloomberg)
Name

Time 0

Default 

Probability

Forecasted

Default 

Probability

Best Network

[Lag; 1st Layer; 2nd Layer; 3rd Layer]

03 ASML NA Equity ASML Holding NV 0.00177343 0.00592898 [15; 14; 6; 0]

20 LIN GY Equity Linde PLC 0.00171860 0.00030275 [14; 9; 12; 0]

32 IFX GY Equity Infineon Technologies AG 0.00363643 0.00187741 [13; 16; 9; 0]

38 CRH ID Equity CRH PLC 0.00417472 0.00561251 [10; 12; 16; 0]

43 SAP GY Equity SAP SE 0.00171348 0.00016373 [13; 7; 19; 0]

49 DB1 GY Equity Deutsche Boerse AG 0.00157778 0.00053382 [15; 20; 3; 0]

50 VNA GY Equity Vonovia SE 0.00358036 0.00822622 [11; 10; 3; 0]

SX5E INDEX

METHOD 2 - Z-SPREAD METHOD

ID
Shares

Outstanding

(Stock Price)

[Forecasted S. P.]

(VE0)

[VE1]

(D0)

[D1]

[Best; Medium; Worst]

(σ E0)

[σ E1]

{α; β; ω}

(VA0)

[VA1]

[Best; Medium; Worst]

(σ A0)

[σ A1]

[Best; Medium; Worst]

01 557.67
(375.80)

[303.70]

(209,572.386)

[169,363.13]

(2,451.60)

[2,247.95; 4,148.29; 23,948.26]

(0.1804)

[0.2428]

{0.0745; 0.9105; 0.0000038}

 (212,034.51)

[171,620.81; 173,529.38; 

192,415.07] 

(0.1783)

[0.2396; 0.2370; 0.2126]

11 441.75
(155.64)

[142.21]

 (68,753.97)

[62,823.22] 

 (11,413.00)

[14,917.95; 20,053.19; 

46,756.78] 

(0.1905)

[0.2454]

{0.0501; 0.9384; 0.0000029}

 (80,216.38)

[184,345.66; 189,503.14; 

216,322.34] 

(0.1633)

[0.2231; 0.2170; 0.1901]

15 450.50       
 (59.32)

[71.27] 

 (26,723.66)

[32,105.78] 

 (5,783.00)

[6,398.08; 7,333.09; 10,834.22] 

(0.2557)

[0.2986]

{0.8558; 0.8949; 0.0000060}

 (32,534.60)

[38,531.62; 39,470.68; 42,987.00] 

(0.2100)

[0.2488; 0.2429; 0.2230]

16 426.26
(116.92)

[112.67]

(49,838.32)

[48,024.76]

(6,860.00)

[7,486.4; 8,297.83; 11,139.12]

(0.3486)

[0.3795]

{0.0800; 0.9100; 0.0000059}

(56,731.47)

[55,543.65; 56,538.59; 59,212.21]

(0.3062)

[0.3281; 0.3234; 0.3078]

21 1616.29
(82.47)

[87.36]

(133,295.44)

[141,197.12]

(6,971.91)

[6,579.74; 7,756.06; 12,417.90]

(0.2014)

[0.1638]

{0.1105; 0.7907; 0.0000096}

(140,297.53)

[147,805.35; 148,986.76; 

153668.78]

(0.1913)

[0.1565; 0.1552; 0.1505]

22 3114.86
(29.71)

[28.63]

(92,542.49)

[89,186.65]

(6,089.00)

[2,037.47; 7,643.29; 336,008.76]

(0.2322)

[0.2859]

{0.0670: 0.9140; 0.0000061}

(98,657.85)

[91,232.94; 96,863.03; 

426,649.88]

(0.2178)

[0.2795; 0.2632; 0.0598]

23 518.71
(68.80)

[72.39]

(35,687.25)

[37,550.80]

(559.20)

[584.61; 725.66; 1,346.93]

(0.2122)

[0.2626]

{0.0630; 0.9141; 0.0000066}

(36,548.87)

[38,137.94; 38,279.60; 38,903.56]

(0.2089)

[0.2586; 0.2576; 0.2535]

24 174.63
(153.09)

[121.78]

(26,734.11)

[21,266.17]

(3,834.16)

[3,295.26; 7,339.21; 72,573.75]

(0.3014)

[0.3128]

[0.1004; 0.8407; 0.0000023]

(30,586.8)

[24,575.73; 28,637.22; 94,154.56]

(0.2634)

[0.2707; 0.2323; 0.0707]

29 30.45
(2,060.50)

[1,213.42]

(62,742.23)

[36,948.74]

(128.36)

[174.93; 243.55; 627.91]

(0.3928)

[0.6365]

{0.4246; 0.4919; 0.0001371]

(62,871.15)

[37,124.43; 37,193.34; 37579.37]

(0.3920)

[0.6335; 0.6323; 0.6258]

33 567.07
(132.68)

[132.37]

(75,238.85)

[75,065.79]

(11,399.00)

[10,713.88; 11,507.08; 

14,116.47]

(0.2538)

[0.3038]

{0.0753; 0.9135; 0.0000047}

(86,583.04)

[85,826.15; 86,622.79; 89,243.50]

(0.2205)

[0.2657; 0.2633; 0.2555]

45 195.07
(313.65)

[309.42]

(61,183.71)

[60,357.93]

(6,279.00)

[6,384.44; 8,540.15; 19,633.66]

(0.3039)

[0.2998]

{0.0449; 0.9281; 0.0000096}

(67,491.81)

[66,770.07; 68,935.13; 80,076.77]

(0.2460)

[0.2710; 0.2625; 0.2260]

SX5E INDEX

METHOD 3 - KMV METHOD (risk-free rate: - 0.432%)

VALUE OF: SHARES OUTSTANDING - VE - D - VA IN MILLIONS OF EUROS
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For the perspective values, we have conducted econometric tests (such as absence of autocorrelation errors), checked the goodness 

of fit on validation sets measured by 𝑅2, conducted out-of-sample tests on different architectures created by varying the number of 
the main parameters of the NAR networks (neurons, layers, and lags). 

In particular, the paper wants to focus on this specific aspect, providing a set of methodologies if the relevant figure is presented as a 
forecasted value and not in a current standpoint, in line with the growing attention paid by regulators on the so-called “Through the 
cycle” measurement. 

The use of artificial neural networks plays therefore a primary role in the whole research: the forecasting obtained with the aid of 
dynamic ANNs proved to be robust in terms of econometric measures and allowed to obtain a robust estimate of the data required 
for the forecasting. 

The above has proved valid, both for the practical examples carried out on one of the main gas and energy suppliers in our country, 
and for those conducted on the 50 companies included in the Euro Stoxx 50 (SX5E Index). 

There is no lack of further insights on this matter. For example, the set of techniques illustrated could be applied to calculate the 
Default Probability of an issuer not belonging to the European area, but to the US area. 

Another interesting potential application could be the construction of a committee machine which, by comparing the dynamic 
artificial neural networks with the traditional econometric methods aimed at forecasting, could choose, time after time, the most 
performing solution in terms of goodness of the estimate, thus improving the heterogeneity of forecasting methods (Bagnato et al., 
2021). 

 
The authors want to thank the anonymous Referees whose suggestions helped improving this article. 
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