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Abstract 
 

The Heston model is one of the most used techniques for estimating the fair value and the risk measures associated with investment 

certificates. Typically, the pricing engine implements a significant number of projections of the underlying until maturity, it 

calculates the pay-off for all the paths thus simulated considering the characteristics of the structured product and, in accordance 

with the Monte Carlo methodology, it determines its theoretical value by calculating its mean and discounting it at valuation time. In 

order to generate the future paths, the two stochastic differential equations governing the dynamics of the Heston model should be 

integrated simultaneously over time: both the one directly associated with the underlying and the one associated with variance. 

Consequently, it is essential to implement a numerical integration scheme that allows such prospective simulations to be 

implemented. The present study aims to consider alternatives to the traditional Euler method with the aim of reducing or in some 

cases eliminating the probability of incurring unfeasible simulated values for the variance. In fact, one of the main drawbacks of the 

Euler basic integration scheme applied to the Heston bivariate stochastic model is that of potentially generating negative variances 

in the simulation that should be programmatically corrected each time such undesired effect occurs. The methods which do not 

intrinsically admit the generation of negative values of the variance proved to be very interesting, in particular the Transformed 

Volatility scheme. 
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1) Introduction 
The financial industry has paid particular attention to the issue of structured products and investment certificates in order to meet the 

needs of investors, as shown in the analysis of the primary market made by ACEPI (Italian Association of Investment Certificates 

and Products). The first quarter of 2023 showed that the total volumes, equal to 5,572 million euros issued by ACEPI members, 

increased by 37% compared to the previous quarter and compared to the average of the quarterly issues in 2022. The increase in 

amounts issued in Q1 2023 strengthens the growth trend recorded in the second half of 2022 (the year ended overall at a figure of 

16,236 million euros), up 71% compared to 2021. In a context of uncertainty regarding monetary policies, market trends and the 

stability of the financial system, the search for protection was one of the factors explaining the growing trend. The number of 

products offered, 376, exceeded the record of 343 already achieved in Q4 last year, confirming a further 10% increase. In terms of 

breakdown into ACEPI macro-classes, in Q1 protected-capital products accounted for 63% of issues on the primary market 

compared to 30% of conditionally protected capital products. The remaining 7% refers to Credit Linked Notes, a type of product 

which had shown considerable growth in 2022, with peaks of 11% and 10% of the total issues in Q3 and Q4. 

The figures presented briefly in this context suggest the importance for financial institutions to estimate the fair value and the 

sensitivity measures of these products as precisely and reliably as possible. To this end, after focusing on variance reduction 

techniques (Bottasso et al., 2023a) and on low discrepancy sequences (Bottasso et al., 2023b), the present study centers on the 

numerical integration schemes associated with one of the most widespread quantitative analysis models for investment certificates: 

the Heston model (1993). In particular, the goal is to look for valid alternatives to the most widespread method of numerical 

integration, i.e., the Euler method which, due to the type of stochastic process, could unfortunately present the drawback of making 

the variance assume negative and, consequently, not eligible values (Rouah, 2013). Such variance values, unacceptable from a 

theoretical point of view, are artificially set to zero or considered for their absolute value. Thus, the importance of studying more 

robust integration schemes that minimize (or, in some cases, eliminate) the probability that this undesired effect occurs. The 

problem is well known in the scientific literature, in fact several studies applied to different types of options have been dedicated to 

this research, including: Vanilla options (Mrázek and Pospíšil, 2017), Asian options (Begin, Bedard and Gaillardetz, 2015), 

Forward-Start options (Broadie and Kaya, 2006), Double-no-touch options (Lord, Koekkoek and van Dijk, 2008). On the other 

hand, the implementation of other schemes, different from the traditional Euler scheme, in the pricing of hybrid instruments, i.e., 

characterized by a Fixed Income component and one or more option strategies, such as certificates, is innovative. 

In the next section of the paper we will describe the integration schemes that allow to reduce the numerical approximation error of 

the dynamics. They will then be implemented in the third section of the paper applied to the pricing of a plain vanilla option written 

on the FTSE MIB index using market parameters. For such pricing problem, an analytical valuation formula is known, i.e. the price 

of a European call option can be expressed in a closed form involving integrals in the complex numbers that can be numerically 

valuated with the Gauss-Laguerre quadrature. Having a reasonably exact expression to which the Monte Carlo method should 

converge makes it possible to test the stability (absence of convergence bias to the fair value) and measure the performance across 

numerical integration schemes. The schemes that proved to be most stable and efficient have been taken into consideration to be 

implemented in a valuation context for which an analytical pricing formula is not available. The last section of the study, therefore, 

implements the schemes that resulted most suitable in the previous tests and values, again using market parameters, the most 

mailto:piergiuseppe.giribone@bper.it


 

 

 

RISK MANAGEMENT MAGAZINE – Volume 18, Issue 2 – Page - 14 - 

 

widespread types of investment certificates, in accordance with the ACEPI statistics previously presented: i.e. products 

characterized by digital coupons with or without memory, autocallability and conditionally protected capital. 

2) An overview of the numerical integration schemes for the Heston model 
The Monte Carlo method within the Heston pricing framework is understood as a set of techniques which allow the generation of an 

artificial historical series of prices of an underlying (typically equity or index) and of variance over time, from which option prices 

can be calculated. In the literature, several numerical schemes allow to achieve this goal. The first approach is to implement 

standard methods valid for any kind of stochastic differential equation that is supposed to be integrated over time: among these, the 

most popular are the Euler and the Milstein methods. The advantage of employing these multi-purpose techniques is that they are 

easy to understand, and their convergence properties are well known. As a result, these two schemes can be adopted for pricing a 

large number of financial derivatives typologies which fair values have to be estimated using a Monte Carlo technique. A second 

approach is to use methods designed ad-hoc for the specific Heston dynamics. As regards the Heston model, we can mention the IJK 

scheme of Kahl and Jäckel (2006), the transformed volatility scheme of Zhu (2010) or the moment-matching scheme of Andersen 

and Brotherton-Ratcliffe (2005). Such approaches, specifically applicable for the most widely used valuation model for pricing 

investment certificates with an equity or index underlying, are potentially able to reach a theoretically higher speed of convergence 

and in certain cases to avoid the unwelcome effect of generating negative variances, which might occur using a multi-purpose 

scheme. For a comprehensive review of methods for numerical integration, the contribution of Van Haastrecht and Pelsser (2010) 

should be considered. 

The starting point for the study and the consequent implementation of any numerical integration technique is to consider the object 

of integration in a continuous form. Bearing in mind that the stock (or index) price and its variance in the Heston model are driven 

by the following bivariate system of stochastic differential equations (SDE): 

 

𝑑𝑆𝑡 = (𝑟 − 𝑞)𝑆𝑡𝑑𝑡 + √𝑣𝑡𝑆𝑡𝑑𝑊1,𝑡 

(1) 

𝑑𝑣𝑡 = 𝜅(𝜃 − 𝑣𝑡)𝑑𝑡 + 𝜎√𝑣𝑡𝑑𝑊2,𝑡 

 

Where 𝐸[𝑑𝑊1,𝑡 , 𝑑𝑊2,𝑡] = 𝜌𝑑𝑡 

 

The parameters of the model are: 

 
(𝑟 − 𝑞) the drift of the process for the share or index. In particular,  𝑟 is the risk-free rate and  𝑞  is the dividend yield associated 

with the underlying. Depending on the available market data, both quantities should be time varying. 

 

𝜅 > 0 the mean reversion speed for the variance. 

𝜃 > 0 the mean reversion level for the variance. 

𝜎 > 0 the volatility of the variance. 

𝑣0 > 0 the initial level of the variance (at time zero). 

Furthermore 𝑊1,𝑡 and 𝑊2,𝑡 are Wiener processes with correlation 𝜌 ∈ [−1,1] and 𝑆𝑡 is the value of the price of the share/index 

assumed at time 𝑡. Thus, 𝑆0  is the initial spot value. 

The processes described in Equation (1) are defined in continuous time. The numerical simulation, however, must necessarily be 

programmed using discrete time steps. Therefore, the first step to be taken in a numerical simulation scheme is generally that of 

approximating the continuous-time process with a discrete-time process: in other words, discretizing the stochastic differential 

equations. Both the dynamics associated with the stock price and that associated with its volatility can be rewritten in the following 

general form, considering a generic random variable  𝑋𝑡: 

𝑑𝑋𝑡 = 𝜇(𝑋𝑡 , 𝑡)𝑑𝑡 + 𝜎(𝑋𝑡 , 𝑡)𝑑𝑊𝑡  (2) 

 

With  𝜇(𝑋𝑡 , 𝑡) being the drift and  𝜎(𝑋𝑡 , 𝑡)  being the volatility of the stochastic process to be represented. 𝑋𝑡 is simulated, along the 

time interval [0, 𝑇], which is supposed to be divided into 𝑁 points thus creating a time grid of the type 0 = 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑁 = 𝑇 

where the time increments are characterized by the same amplitude 𝑑𝑡. This choice also allows the use of a more convenient 

notation since it allows to write 𝑡𝑖 − 𝑡𝑖−1 merely with 𝑑𝑡 for any 𝑖 = 2, … , 𝑁. It being understood that all results derived with 

equally spaced time increments can easily be extended by ranges of non-uniform amplitude. Integrating 𝑑𝑋𝑡 from 𝑡 to 𝑡 + 𝑑𝑡, we 

have: 

𝑋𝑡+𝑑𝑡 = 𝑋𝑡 + ∫ 𝜇(𝑋𝑢, 𝑢)𝑑𝑢
𝑡+𝑑𝑡

𝑡
+ ∫ 𝜎(𝑋𝑢, 𝑢)𝑑𝑊𝑢

𝑡+𝑑𝑡

𝑡
 (3) 

Equation (3) is the starting point for the discretization. The concept is that at time 𝑡 the value of 𝑋𝑡  is known and we want to obtain 

the next value of the time series 𝑋𝑡+𝑑𝑡  at time 𝑡 + 𝑑𝑡. Clearly, to obtain the value of an option by means of numerical simulation, 

which we supposed in the first part of our discussion to be a plain vanilla European option, we have to simulate the Heston bivariate 

process (𝑆𝑡 , 𝑣𝑡) and generate 𝑁 paths from 𝑡 = 0 to 𝑡 = 𝑇. We then retain the last stock price from each stock price path and obtain 

the payoff of the European option at expiry, take the average over all stock price paths and discount back to time zero. So, in the 

case considered we would have respectively for a call option, 𝐶(𝐾) and a put option 𝑃(𝐾):  

𝐶(𝐾) = 𝑒−𝑟𝑇 1

𝑁
∑ max(0, 𝑆𝑇

(𝑖)
− 𝐾)𝑁

𝑖=1     (4) 



 

 

 

RISK MANAGEMENT MAGAZINE – Volume 18, Issue 2 – Page - 15 - 

 

𝑃(𝐾) = 𝑒−𝑟𝑇 1

𝑁
∑ max(0, 𝐾 − 𝑆𝑇

(𝑖)
)𝑁

𝑖=1     (5) 

Where 𝑆𝑇
(𝑖)

  is the final price of the stock or index generated by the 𝑖 -th path for 𝑖 = 1, … , 𝑁. Such valuation requires the estimation 

of the characteristic parameters of the Heston dynamics: 𝜅, 𝜃, 𝜎, 𝑣0 and 𝜌 (refer to paragraph 3). 

There are two kinds of problems that arise when simulating the bivariate stochastic process (𝑆𝑡 , 𝑣𝑡). The first aspect is the slow 

convergence speed. The second, to be considered as a more serious problem, is given by the CIR (Cox-Ingersoll-Ross) type of 

process which describes the variance 𝑣𝑡 over time. Considering how it was modeled, this dynamic leads a large number of 

numerical simulation schemes (including the most popular in the financial industry, namely Euler and Milstein) to generate negative 

values for 𝑣𝑡, even though the Feller condition, such that 2𝜅𝜃 > 𝜎2, is respected. This occurs because such condition is valid for 

continuous-time CIR stochastic processes, while simulations, by nature, work in discrete time, approximating the dynamics defined 

on the continuum. The simplest and most direct way to manage the problem of having a negative variance even though Feller's 

condition is satisfied is to correct it instantaneously by systematically introducing an override every time this unwanted effect 

occurs. There are at least two ways to implement this: 

- in the full truncation scheme, a negative value for 𝑣𝑡   is set equal to zero. So 𝑣𝑡 is replaced with 𝑣𝑡
+ = max(0, 𝑣𝑡) anywhere during 

the discretization process. 

- in the reflection scheme, a negative value for 𝑣𝑡   is reflected with −𝑣𝑡. So 𝑣𝑡 is replaced with |𝑣𝑡|  anywhere during the 

discretization process. 

The disadvantage of the full truncation scheme is that it creates a zero variance, which is an inaccurate representation of the real 

dynamics of an asset, which never shows a zero variance. 

The disadvantage of the reflection schemes is that they make a large negative value assume a largely positive one. So, in other 

words, it would produce the bias of turning a low volatility into a high volatility. 

The first problem related to the Heston model can be mitigated by taking into consideration variance reduction methodologies 

(Giribone and Ligato, 2013) or by implementing a Randomized Quasi Monte Carlo (Giribone and Ligato, 2014), since there are no 

distorting effects of convergence. 

For the second aspect, certainly more crucial, it is necessary to resort to an adjustment of the integration scheme itself in the hope of 

improving the approximation of the continuous dynamics. So, another way to deal with negative simulated values of 𝑣𝑡 is to design 

simulation schemes for variance that do not inherently produce negative values or so that the probability of running into such cases 

is very low. Most of the research focuses precisely on this aspect, namely that of simulating the variance process in the Heston 

model in the most accurate and stable way possible. 

All simulation schemes for the Heston model contain the same basic steps. First, two independent random draws are made from a 

standard normal distribution. These variables are made dependent by applying the Cholesky decomposition. They are then 

multiplied by √𝑑𝑡  to make them a proxy for Brownian motion increments. The second step provides the updated value of the 

variance 𝑣𝑡+𝑑𝑡 and the last step the updated value for the share or index, 𝑆𝑡+𝑑𝑡. This procedure, common to all the schemes that will 

be presented below, can therefore be summarized as follows: 

Initialization: Assign the spot value to 𝑆0 and the initial variance value to 𝑣0. 

Step 1. Generate two independent random variables 𝑍1 and 𝑍2 and define 𝑍𝑉 = 𝑍1 and 𝑍𝑆 = 𝜌𝑍𝑉 + √1 − 𝜌2𝑍2. Approximate the 

Brownian motion with 𝑑𝑊1,𝑡 = 𝑍𝑆√𝑑𝑡 and 𝑑𝑊2,𝑡 = 𝑍𝑉√𝑑𝑡. 

Step 2. Get the updated value for 𝑣𝑡+𝑑𝑡 

Step 3. Given 𝑣𝑡+𝑑𝑡 calculate the updated value of 𝑆𝑡+𝑑𝑡 and return to Step 1. 

Let us note that, in accordance with the traditional use of the Cholesky decomposition for the simulation of correlated variables, the 

following statistical properties hold: 𝐸[𝑍𝑉] = 𝐸[𝑍𝑆] = 0 and 𝐸[𝑍𝑉𝑍𝑆] = 𝜌𝐸[𝑍1
2] + √1 − 𝜌2𝐸[𝑍1𝑍2] = 𝜌. 

In the following subparagraphs, the most common integration schemes for (𝑆𝑡 , 𝑣𝑡) will be described assuming that the time grid is 

discretized using equally spaced time increments with a size equal to 𝑑𝑡. 

2.1) The Euler scheme 

The easiest way to discretize the process represented in Eq. (3) is to adopt the traditional Euler scheme. This is equivalent to 

approximating integrals using the left-point rule (Rouah, 2013). The first integral is approximated as the product of the integrand at 

time 𝑡 and the integration domain 𝑑𝑡: 

∫ 𝜇(𝑋𝑢, 𝑢)𝑑𝑢
𝑡+𝑑𝑡

𝑡
≈ 𝜇(𝑋𝑡 , 𝑡) ∫ 𝑑𝑢

𝑡+𝑑𝑡

𝑡
= 𝜇(𝑋𝑡 , 𝑡)𝑑𝑡 (6) 

The left-point rule is used since the value 𝜇(𝑋𝑡 , 𝑡) is known at time 𝑡. The second integral is approximated as follows: 

∫ 𝜎(𝑋𝑢 , 𝑢)𝑑𝑢
𝑡+𝑑𝑡

𝑡
≈ 𝜎(𝑋𝑡 , 𝑡) ∫ 𝑑𝑊𝑢

𝑡+𝑑𝑡

𝑡
= 𝜎(𝑋𝑡 , 𝑡)(𝑊𝑡+𝑑𝑡 − 𝑊𝑡) = 𝜎(𝑋𝑡 , 𝑡)√𝑑𝑡𝑍, (7) 

since 𝑊𝑡+𝑑𝑡 − 𝑊𝑡 and √𝑑𝑡𝑍 are identical in distribution, where 𝑍 is a standard normal variable. Thus, the discretization of Equation 

(3) according to the Euler method is: 

𝑋𝑡+𝑑𝑡 = 𝑋𝑡 + 𝜇(𝑋𝑡 , 𝑡)𝑑𝑡 + 𝜎(𝑋𝑡 , 𝑡)√𝑑𝑡𝑍 (8) 
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Considering the specific Heston model, the next step is to particularize Eq. (8) for the dynamics that regulate the variance and for 

the one that regulates the price. 

The SDE for 𝑣𝑡 in Eq. (1) rewritten in the form of Eq. (3) is: 

𝑣𝑡+𝑑𝑡 = 𝑣𝑡 + ∫ 𝜅(𝜃 − 𝑣𝑢)𝑑𝑢
𝑡+𝑑𝑡

𝑡
+ ∫ 𝜎√𝑣𝑢𝑑𝑊𝑢

𝑡+𝑑𝑡

𝑡
 (9) 

In accordance with Eq. (8), the Euler discretization approximates the integrals in (9) as: 

∫ 𝜅(𝜃 − 𝑣𝑢)𝑑𝑢
𝑡+𝑑𝑡

𝑡
≈ 𝜅(𝜃 − 𝑣𝑡)𝑑𝑡 (10) 

∫ 𝜎√𝑣𝑢𝑑𝑊2,𝑢
𝑡+𝑑𝑡

𝑡
≈ 𝜎√𝑣𝑡(𝑊𝑡+𝑑𝑡 − 𝑊𝑡) = 𝜎√𝑣𝑡√𝑑𝑡𝑍𝑉 (11) 

This implies that the Euler discretization for the variance is: 

𝑣𝑡+𝑑𝑡 = 𝑣𝑡 + 𝜅(𝜃 − 𝑣𝑡)𝑑𝑡 + 𝜎√𝑣𝑡√𝑑𝑡𝑍𝑉 (12) 

From the theory related to stochastic processes of the CIR type, the probability of generating negative values for 𝑣𝑡+𝑑𝑡 can be 

calculated, as follows: 

Pr(𝑣𝑡+𝑑𝑡 < 0) = Φ (
−(1−𝜅𝑑𝑡)𝑣𝑡−𝜅𝜃𝑑𝑡

𝜎√𝑣𝑡√𝑑𝑡
) (13) 

Where Φ(𝑥) denotes the standard normal cumulative distribution function, evaluated at 𝑥. Therefore, since there is a non-zero 

probability of having a negative variance, the full truncation scheme or a reflection scheme should be applied to override any 

negative value generated during the simulation. 

Regarding the simulation of the stock price or the index price, there are two common approaches: we can either directly simulate 𝑆𝑡 

or we can simulate ln 𝑆𝑡 then calculate the exponential on the result obtained. The SDE for 𝑆𝑡 in Eq. (3) can be expressed in integral 

form as: 

𝑆𝑡+𝑑𝑡 = 𝑆𝑡 + (𝑟 − 𝑞) ∫ 𝑆𝑢𝑑𝑢
𝑡+𝑑𝑡

𝑡
+ ∫ √𝑣𝑢𝑆𝑢𝑑𝑊𝑢

𝑡+𝑑𝑡

𝑡
 (14) 

Applying Eq. (8), the Euler discretization approximates the integrals as follows: 

∫ 𝑆𝑢𝑑𝑢
𝑡+𝑑𝑡

𝑡
≈ 𝑆𝑡𝑑𝑡 (15) 

∫ √𝑣𝑢𝑆𝑢𝑑𝑊1,𝑢
𝑡+𝑑𝑡

𝑡
≈ √𝑣𝑡𝑆𝑡(𝑊𝑡+𝑑𝑡 − 𝑊𝑡) = √𝑣𝑡𝑆𝑡√𝑑𝑡𝑍𝑆 (16) 

Consequently, the discretization of the share price or index price is: 

𝑆𝑡+𝑑𝑡 = 𝑆𝑡 + (𝑟 − 𝑞)𝑆𝑡𝑑𝑡 + √𝑣𝑡𝑆𝑡√𝑑𝑡𝑍𝑆 (17) 

To simulate the log stock price, we apply Itô's lemma to the first dynamic in Eq. (1). Then, ln 𝑆𝑡 follows the SDE: 

𝑑 ln 𝑆𝑡 = (𝑟 − 𝑞 −
1

2
𝑣𝑡) 𝑑𝑡 + √𝑣𝑡𝑑𝑊1,𝑡 (18) 

Or expressing it as integral:  

ln 𝑆𝑡+𝑑𝑡 = ln 𝑆𝑡 + ∫ (𝑟 − 𝑞 −
1

2
𝑣𝑢) 𝑑𝑢

𝑡+𝑑𝑡

𝑡
+ ∫ √𝑣𝑢𝑑𝑊1,𝑢

𝑡+𝑑𝑡

𝑡
 (19) 

The Euler discretization for the process ln 𝑆𝑡 is: 

ln 𝑆𝑡+𝑑𝑡 ≈ ln 𝑆𝑡 + (𝑟 − 𝑞 −
1

2
𝑣𝑡) 𝑑𝑡 + √𝑣𝑡(𝑊1,𝑡+𝑑𝑡 − 𝑊1,𝑡) = ln 𝑆𝑡 + (𝑟 − 𝑞 −

1

2
𝑣𝑡) 𝑑𝑡 + √𝑣𝑡√𝑑𝑡𝑍𝑆 (20) 

The Euler discretization for 𝑆𝑡 is obtained applying the exponential to the various terms of the previous equation: 

𝑆𝑡+𝑑𝑡 = 𝑆𝑡 exp [(𝑟 − 𝑞 −
1

2
𝑣𝑡) 𝑑𝑡 + √𝑣𝑡√𝑑𝑡𝑍𝑆] (21) 

Again, in order to avoid the undesirable effect of obtaining negative variances, the introduction of the full truncation or reflection 

scheme is necessary, replacing 𝑣𝑡 respectively with 𝑣𝑡
+  or |𝑣𝑡|. 

To implement the Euler simulation, initialization is performed setting 𝑆 with the initial values of 𝑆0  (or in the case of adoption of 

the logarithmic evolution process 𝑥0 = ln 𝑆0) for the stock price and 𝑣0 for the variance (in all cases). Given the values (𝑆𝑡 , 𝑣𝑡), 

𝑣𝑡+𝑑𝑡 is obtained from Eq. (12) and 𝑆𝑡+𝑑𝑡  is obtained both from Eq. (17) and from Eq. (21) (for the case of logarithmic evolution of 

the asset price over time). 

2.2) The Milstein scheme 

The general case for the discretization of an SDE according to such a numerical integration scheme is described in Glasserman 

(2003) and Kloeden and Platen (1992). For the specific case observed, i.e., the Heston bivariate process, the coefficients of Eq. (2) 

do not depend directly on time 𝑡, but exclusively on 𝑋𝑡. For the sake of simplicity, we can thus assume that the stock price and the 

variance are driven by the SDE: 

𝑑𝑋𝑡 = 𝜇(𝑋𝑡)𝑑𝑡 + 𝜎(𝑋𝑡)𝑑𝑊𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡 (22) 

In integral form: 
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𝑋𝑡+𝑑𝑡 = 𝑋𝑡 + ∫ 𝜇𝑠𝑑𝑠
𝑡+𝑑𝑡

𝑡
+ ∫ 𝜎𝑠𝑑𝑊𝑠

𝑡+𝑑𝑡

𝑡
 (23) 

The idea behind the Milstein scheme is that the accuracy of the discretization can be increased by expanding the coefficients 𝜇𝑡 =
𝜇(𝑋𝑡) and 𝜎𝑡 = 𝜎(𝑋𝑡) through Itô's lemma. The coefficients will follow the following SDEs: 

𝑑𝜇𝑡 = (𝜇𝑡
′ 𝜇𝑡 +

1

2
𝜇𝑡

′′𝜎𝑡
2) 𝑑𝑡 + (𝜇𝑡

′ 𝜎𝑡)𝑑𝑊𝑡 (24) 

𝑑𝜎𝑡 = (𝜎𝑡
′𝜇𝑡 +

1

2
𝜎𝑡

′′𝜎𝑡
2) 𝑑𝑡 + (𝜎𝑡

′𝜎𝑡)𝑑𝑊𝑡 (25) 

Where the single ′and double quotes ′′ refer to the differentiation in 𝑋 and where the derivatives in 𝑡 are zero since 𝜇𝑡 and 𝜎𝑡 do not 

have a direct time dependence in the Heston model. The integral form of the coefficients at time 𝑠 (with 𝑡 < 𝑠 < 𝑡 + 𝑑𝑡) is: 

𝜇𝑠 = 𝜇𝑡 + ∫ (𝜇𝑢
′ 𝜇𝑢 +

1

2
𝜇𝑢

′′𝜎𝑢
2) 𝑑𝑢

𝑠

𝑡
+ ∫ (𝜇𝑢

′ 𝜎𝑢)𝑑𝑊𝑢
𝑠

𝑡
 (26) 

𝜎𝑠 = 𝜎𝑡 + ∫ (𝜎𝑢
′ 𝜇𝑢 +

1

2
𝜎𝑢

′′𝜎𝑢
2) 𝑑𝑢

𝑠

𝑡
+ ∫ (𝜎𝑢

′ 𝜎𝑢)𝑑𝑊𝑢
𝑠

𝑡
 (27) 

Substituting 𝜇𝑠 and 𝜎𝑠  into the integrals in Eq. (23) we obtain: 

𝑋𝑡+𝑑𝑡 = 𝑋𝑡 + ∫ [𝜇𝑡 + ∫ (𝜇𝑢
′ 𝜇𝑢 +

1

2
𝜇𝑢

′′𝜎𝑢
2) 𝑑𝑢

𝑠

𝑡
+ ∫ (𝜇𝑢

′ 𝜎𝑢)𝑑𝑊𝑢
𝑠

𝑡
] 𝑑𝑠

𝑡+𝑑𝑡

𝑡
+  

+ ∫ [𝜎𝑡 + ∫ (𝜎𝑢
′ 𝜇𝑢 +

1

2
𝜎𝑢

′′𝜎𝑢
2) 𝑑𝑢

𝑠

𝑡
+ ∫ (𝜎𝑢

′ 𝜎𝑢)𝑑𝑊𝑢
𝑠

𝑡
] 𝑑𝑊𝑠

𝑡+𝑑𝑡

𝑡
 (28) 

The first order major differentials 𝑑𝑠𝑑𝑢 = 𝒪(𝑑𝑡2) and 𝑑𝑠𝑑𝑊𝑢 = 𝒪(𝑑𝑡3/2)  are here neglected. The term 𝑑𝑊𝑢𝑑𝑊𝑠 is retained since 

it is of the first order, 𝒪(𝑑𝑡). Considering such assumptions, Eq. (28) simplifies to: 

𝑋𝑡+𝑑𝑡 = 𝑋𝑡 + 𝜇𝑡 ∫ 𝑑𝑠
𝑡+𝑑𝑡

𝑡
+ +𝜎𝑡 ∫ 𝑑𝑊𝑠

𝑡+𝑑𝑡

𝑡
+ ∫ ∫ (𝜎𝑢

′ 𝜎𝑢)
𝑠

𝑡
𝑑𝑊𝑢𝑑𝑊𝑠

𝑡+𝑑𝑡

𝑡
 (29) 

We apply the Euler discretization to the last term of Eq. (29) and we obtain: 

∫ ∫ (𝜎𝑢
′ 𝜎𝑢)

𝑠

𝑡
𝑑𝑊𝑢𝑑𝑊𝑠

𝑡+𝑑𝑡

𝑡
≈ 𝜎𝑡

′𝜎𝑡 ∫ ∫ 𝑑𝑊𝑢𝑑𝑊𝑠
𝑠

𝑡

𝑡+𝑑𝑡

𝑡
= 𝜎𝑡

′𝜎𝑡 ∫ (𝑊𝑠 − 𝑊𝑡)𝑑𝑊𝑠
𝑡+𝑑𝑡

𝑡
= 𝜎𝑡

′𝜎𝑡 [∫ 𝑊𝑠𝑑𝑊𝑠 − 𝑊𝑡𝑊𝑡+𝑑𝑡 + 𝑊𝑡
2𝑡+𝑑𝑡

𝑡
] (30) 

To solve the remaining integral in Eq. (30), we define 𝑑𝑌𝑡 = 𝑊𝑡𝑑𝑊𝑡. Using Itô’s Lemma, it is easy to prove that  𝑌𝑡 has the 

following solution: 𝑌𝑡 =
1

2
𝑊𝑡

2 −
1

2
𝑡.  Therefore:  

𝜕𝑌

𝜕𝑡
= −

1

2
, 

𝜕𝑌

𝜕𝑊
= 𝑊 and 

𝜕2𝑌

𝜕𝑊2 = 1: 

𝑑𝑌𝑡 = (−
1

2
+ 0 +

1

2
× 1 × 1) 𝑑𝑡 + (𝑊𝑡 × 1)𝑑𝑊𝑡 = 𝑊𝑡𝑑𝑊𝑡 (31) 

Using this result, we can write: 

∫ 𝑊𝑠𝑑𝑊𝑠
𝑡+𝑑𝑡

𝑡
= 𝑌𝑡+𝑑𝑡 − 𝑌𝑡 =

1

2
𝑊𝑡+𝑑𝑡

2 −
1

2
𝑊𝑡

2 −
1

2
𝑑𝑡 (32) 

Substituting this last equation into Eq. (30) we obtain: 

∫ ∫ (𝜎𝑢
′ 𝜎𝑢)

𝑠

𝑡
𝑑𝑊𝑢𝑑𝑊𝑠

𝑡+𝑑𝑡

𝑡
≈

1

2
𝜎𝑡

′𝜎𝑡[(𝑊𝑡+𝑑𝑡 − 𝑊𝑡)2 − 𝑑𝑡] =
1

2
𝜎𝑡

′𝜎𝑡[(Δ𝑊𝑡)2 − 𝑑𝑡] (33) 

Where Δ𝑊𝑡 = 𝑊𝑡+𝑑𝑡 − 𝑊𝑡, which is equal in distribution to √𝑑𝑡𝑍 with 𝑍 distributed as a standard normal. Combining Eq. (29) and 

Eq. (33), the general form for the Milstein discretization is therefore: 

𝑋𝑡+𝑑𝑡 = 𝑋𝑡 + 𝜇𝑡𝑑𝑡 + 𝜎𝑡√𝑑𝑡𝑍 +
1

2
𝜎𝑡

′𝜎𝑡𝑑𝑡(𝑍2 − 1) (34) 

Thus, the Milstein discretization for 𝑑𝑋𝑡 expressed in Eq. (34) is identical to the Euler one in Eq. (8), with the exception of the 

added term 
1

2
𝜎𝑡

′𝜎𝑡𝑑𝑡(𝑍2 − 1) which allows to improve the accuracy of the discretization scheme compared to the standard one. 

Reconsidering the Heston model in Eq. (1), this last integration scheme can be applied both for the processes of 𝑆𝑡 (or ln 𝑆𝑡) and the 

processes of  𝑣𝑡. 

The coefficients for the variance process are 𝜇(𝑣𝑡) = 𝜅(𝜃 − 𝑣𝑡) and 𝜎(𝑣𝑡) = 𝜎√𝑣𝑡,   substituting them in the general expression 

(34) we obtain: 

𝑣𝑡+𝑑𝑡 = 𝑣𝑡 + 𝜅(𝜃 − 𝑣𝑡)𝑑𝑡 + 𝜎√𝑣𝑡√𝑑𝑡𝑍𝑉 +
1

4
𝜎2𝑑𝑡(𝑍𝑉

2 − 1) (35) 

Which can be rewritten as: 

𝑣𝑡+𝑑𝑡 = (√𝑣𝑡 +
1

2
𝜎√𝑑𝑡𝑍𝑉)

2

+ 𝜅(𝜃 − 𝑣𝑡)𝑑𝑡 −
1

4
𝜎2𝑑𝑡 (36) 

Although the Milstein discretization scheme for the variance stochastic process produces far fewer negative values compared to the 

basic Euler scheme (Rouah, 2013), it is still necessary to implement the full truncation scheme or the reflection scheme to Eq. (35) 

and Eq. (36). 

The coefficients for the stock price or the index price process are 𝜇(𝑣𝑡) = (𝑟 − 𝑞)𝑆𝑡 and 𝜎(𝑆𝑡) = √𝑣𝑡𝑆𝑡  , substituting them into the 

general expression, Eq. (34) becomes: 
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𝑆𝑡+𝑑𝑡 = 𝑆𝑡 + (𝑟 − 𝑞)𝑆𝑡𝑑𝑡 + √𝑣𝑡√𝑑𝑡𝑆𝑡𝑍𝑆 +
1

2
𝑣𝑡𝑆𝑡𝑑𝑡(𝑍𝑆

2 − 1) (37) 

We can also discretize the log-stock process, which, according to Itô's lemma, will follow the following dynamics: 

𝑑 ln 𝑆𝑡  = (𝑟 − 𝑞 −
1

2
𝑣𝑡) 𝑑𝑡 + √𝑣𝑡𝑑𝑊1,𝑡 (38) 

The coefficients are  𝜇(𝑆𝑡) = 𝑟 − 𝑞 −
1

2
𝑣𝑡 and 𝜎(𝑆𝑡) = √𝑣𝑡 so that 𝜇𝑡

′ = 𝜎𝑡
′ = 0. Since 𝑣𝑡 is known at time 𝑡, we can treat it as a 

constant within the definition of the coefficients. Applying Eq. (34), we reach the following result: 

ln 𝑆𝑡+𝑑𝑡  = ln 𝑆𝑡 + (𝑟 − 𝑞 −
1

2
𝑣𝑡) 𝑑𝑡 + √𝑣𝑡√𝑑𝑡𝑍𝑠 (39) 

which is identical to Eq. (20) obtained applying the simple Euler discretization. Thus, the Milstein discretization of ln 𝑆𝑡 in the 

Heston model does not produce a more accurate approximation than the basic method. 

Similarly to what has already been discussed, the price of the share or the index is directly obtained applying the exponential 

function to all the terms of Eq. (39). The adoption of the full truncation or the reflection scheme is also necessary for Eq. (37) or Eq. 

(39). 

To implement the Milstein simulation, we initialize the value of the stock price and the value of the variance, respectively with 𝑆0 

and 𝑣0. Given the simulated values (𝑆𝑡 , 𝑣𝑡), 𝑣𝑡+𝑑𝑡 is obtained from Eq. (35) and 𝑆𝑡+𝑑𝑡 is obtained from Eq. (37) or, alternatively, 

from Eq. (39). 

In Eq. (34) for the discretization of 𝑑𝑋𝑡, the coefficients 𝜇𝑡 = 𝜇(𝑋𝑡) and 𝜎𝑡 = 𝜎(𝑋𝑡) are respectively the drift and the volatility of 

the process for 𝑋𝑡 and they are functions of 𝑋𝑡 itself. In the implicit version of the Milstein scheme, the coefficient of the drift 𝜇𝑡 is 

expressed as a function of 𝑋𝑡+𝑑𝑡. Consequently, such value is known only implicitly and not explicitly, as in the previous case which 

depended on 𝑋𝑡 and Eq. (34) becomes: 

𝑋𝑡+𝑑𝑡 = 𝑋𝑡 + 𝜇𝑡+𝑑𝑡𝑑𝑡 + 𝜎𝑡√𝑑𝑡𝑍 +
1

2
𝜎𝑡

′𝜎𝑡𝑑𝑡(𝑍2 − 1) (40) 

Where 𝜇𝑡+𝑑𝑡 = 𝜇(𝑋𝑡+𝑑𝑡). It is also possible to interpolate between the Milstein implicit-explicit schemes, calculating a weighted 

average between 𝜇𝑡 and 𝜇𝑡+𝑑𝑡. The weighted implicit-explicit Milstein scheme is therefore: 

𝑋𝑡+𝑑𝑡 = 𝑋𝑡 + [𝛼𝜇𝑡 + (1 − 𝛼)𝜇𝑡+𝑑𝑡]𝑑𝑡 + 𝜎𝑡√𝑑𝑡𝑍 +
1

2
𝜎𝑡

′𝜎𝑡𝑑𝑡(𝑍2 − 1) (41) 

Where 𝛼 ∈ (0,1) represents the assigned weight. The explicit Milstein can be obtained as a degenerate case by setting 𝛼 = 1, just as 

the implicit Milstein can be obtained by setting 𝛼 = 0. 

To apply the implicit Milstein scheme to the Heston model, in Eq. (35) we replace the term 𝜅(𝜃 − 𝑣𝑡)𝑑𝑡 with 𝜅(𝜃 − 𝑣𝑡+𝑑𝑡)𝑑𝑡. We 

then bring 𝜅𝑣𝑡+𝑑𝑡𝑑𝑡 over to the left-hand side of the resulting equation, and we divide by 1 + 𝜅𝑑𝑡 to obtain: 

𝑣𝑡+𝑑𝑡 =
𝑣𝑡+𝜅𝜃𝑑𝑡+𝜎√𝑣𝑡√𝑑𝑡𝑍𝑉+

1

4
𝜎2𝑑𝑡(𝑍𝑉

2−1)

1+𝜅𝑑𝑡
 (42) 

The same steps can also be performed for the case of the weighted scheme (Eq. 41) to obtain: 

𝑣𝑡+𝑑𝑡 =
𝑣𝑡+𝜅(𝜃−𝛼𝑣𝑡)𝑑𝑡+𝜎√𝑣𝑡√𝑑𝑡𝑍𝑉+

1

4
𝜎2𝑑𝑡(𝑍𝑉

2−1)

1+(1−𝛼)𝜅𝑑𝑡
 (43) 

 

2.3) The Transformed Volatility scheme 

One way to avoid negative variances is to simulate volatility rather than variance, and then square the result. From Itô's lemma, the 

volatility 𝜔𝑡 = √𝑣𝑡   follows the following stochastic process (Rouah, 2013): 

𝑑𝜔𝑡  =
𝜅

2
[(𝜃 −

𝜎2

4𝜅
)

1

𝜔𝑡
− 𝜔𝑡] 𝑑𝑡 +

1

2
𝜎𝑑𝑊1,𝑡 (44) 

The Euler discretization for Eq. (44) is: 

𝜔𝑡+𝑑𝑡  = 𝜔𝑡 +
𝜅

2
[(𝜃 −

𝜎2

4𝜅
)

1

𝜔𝑡
− 𝜔𝑡] 𝑑𝑡 +

1

2
𝜎√𝑑𝑡𝑍𝑉 (45) 

While the Euler discretization of the log stock price produces: 

𝑆𝑡+𝑑𝑡  = 𝑆𝑡 exp [(𝑟 − 𝑞 −
1

2
𝜔𝑡

2) 𝑑𝑡 + 𝜔𝑡√𝑑𝑡𝑍𝑆] (46) 

Zhu (2010) has shown that the Euler discretization of the volatility 𝜔𝑡  avoids the negative variances, but it has the disadvantage that 

the mean level 𝜃𝜔 =
𝜃−

𝜎2

4𝜅

𝜔𝑡
  in Eq. (44) is stochastic due to the term 

1

𝜔𝑡
. 

This could cause low simulation performance. The transformed volatility scheme proposed by Zhu (2010) applies a robust 

approximation for 𝜃𝜔 which allows to rectify this problem. His transformed process for volatility is: 

𝑑𝜔𝑡  =
𝜅

2
[𝜃∗ − 𝜔𝑡]𝑑𝑡 +

𝜎

2
𝑑𝑊2,𝑡 (47) 

Which is characterized by having a mean reversion speed equal to 𝜅/2  and a variance volatility equal to 𝜎/2. 
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The mean reversion level 𝜃𝑡
∗ is equal to: 

𝜃𝑡
∗ =

𝛽−𝜔𝑡 exp(−𝜅𝑑𝑡/2)

1−exp(−𝜅𝑑𝑡/2)
 (48) 

Where: 

𝛽 = √[𝐸(𝑣𝑡+𝑑𝑡) − Var(𝜔𝑡+𝑑𝑡)]+ = √[𝜃 + (𝑣𝑡 − 𝜃) exp(−𝜅𝑑𝑡) −
𝜎2

4𝜅
(1 − exp(−𝜅𝑑𝑡))]

+

 (49) 

Note that parameter 𝛽 is equal to zero when 𝐸(𝑣𝑡+𝑑𝑡) < Var(𝜔𝑡+𝑑𝑡), while the mean reversion level 𝜃𝑡
∗  depends on the value of 𝜔𝑡. 

The Euler discretization for 𝑑𝜔𝑡 in Eq. (47) generates: 

𝜔𝑡+𝑑𝑡  = 𝜔𝑡 +
𝜅

2
[Θ∗ − 𝜔𝑡]𝑑𝑡 +

𝜎

2
√𝑑𝑡𝑍𝑉 (50) 

The same procedure can be used for conducting the simulations as discussed in the previously presented discretization schemes, 

with the sole exception that the starting point for the initial volatility should be set to √𝑣0. 

2.4) The Balanced Implicit scheme 

This scheme is able to preserve positivity in the stochastic process associated with the variance. It is defined in Platen and Heath 

(2009) and in Kahl and Jäckel (2006) as: 

𝑣𝑡+𝑑𝑡 = 𝑣𝑡 + 𝜇𝑡𝑑𝑡 + 𝜎𝑡Δ𝑊𝑡 + (𝑣𝑡 − 𝑣𝑡+𝑑𝑡)𝐶(𝑣𝑡) (51) 

Where: 

𝐶(𝑣𝑡) = 𝑐0(𝑣𝑡)𝑑𝑡 + 𝑐1(𝑣𝑡)|Δ𝑊𝑡| (52) 

With 𝑐0(𝑣𝑡) = 𝜅 and 𝑐1(𝑣𝑡) = 𝜎/√𝑣𝑡. The Balanced Implicit scheme for the Heston model is therefore: 

𝑣𝑡+𝑑𝑡 = 𝑣𝑡 + 𝜅(𝜃 − 𝑣𝑡)𝑑𝑡 + 𝜎√𝑣𝑡√𝑑𝑡𝑍𝑉 + (𝑣𝑡 − 𝑣𝑡+𝑑𝑡)𝐶(𝑣𝑡) =
𝑣𝑡[1+𝐶(𝑣𝑡)]+𝜅(𝜃−𝑣𝑡)𝑑𝑡+𝜎√𝑣𝑡√𝑑𝑡𝑍𝑉

1+𝐶(𝑣𝑡)
 (53) 

With: 

𝐶(𝑣𝑡) = 𝜅𝑑𝑡 +
𝜎√𝑑𝑡|𝑍𝑉|

√𝑣𝑡
 (54) 

Since the variance is always guaranteed to be positive, reflection and full truncation schemes are unnecessary. Unfortunately, as 

shown by Kahl and Jäckel (2006), the convergence of this scheme is not always optimal. 

2.5) The Pathwise Adapted Linearization Quadratic 

Another scheme for variance discretization is the Path Adapted Linearization Quadratic introduced by Kahl and Jäckel (2006). 

These authors demonstrated a faster convergence compared to the previous one, especially for small values of 𝜎. The discretization 

scheme is given by: 

𝑣𝑡+𝑑𝑡 = 𝑣𝑡 + [𝜅(�̃� − 𝑣𝑡) + 𝜎𝛽𝑛√𝑣𝑡] + (1 +
𝜎𝛽𝑛−2𝜅√𝑣𝑡

4√𝑣𝑡
𝑑𝑡) 𝑑𝑡 (55) 

Where �̃� = 𝜃 − 𝜎2/(4𝜅) and where 𝛽𝑛 =
𝑍𝑉

√𝑑𝑡
. For high values of 𝜎 it could introduce potential instabilities (Rouah, 2013). 

2.6) The Kahl-Jäckel IJK Scheme 
This scheme was also proposed by Kahl and Jäckel (2006) and it consists in simulating 𝑣𝑡 with the implicit Milstein scheme, 

according to Eq. (42) and simulating the ln 𝑆𝑡 with the IJK discretization: 

ln 𝑆𝑡+𝑑𝑡  = ln 𝑆𝑡 + (𝑟 − 𝑞 −
𝑣𝑡+𝑣𝑡+𝑑𝑡

4
) 𝑑𝑡 + 𝜌√𝑣𝑡𝑑𝑡𝑍𝑉 +

1

2
(√𝑣𝑡 + √𝑣𝑡+𝑑𝑡)(𝑍𝑆 − 𝜌𝑍𝑉)√𝑑𝑡 +

𝜌𝜎𝑑𝑡

2
(𝑍𝑉

2 − 1) (56) 

Since this scheme can produce negative values for variance, it is necessary to implement it in conjunction with the full truncation or 

the reflection scheme. For details on the derivation of the scheme, please refer to the above cited paper. 

2.7) The Moment Matching scheme 

Andersen and Brotherton-Ratcliffe (2005) proposed a moment-matched discretization scheme which generates only positive 

variances. This technique produces a variance which is distributed according to a log-normal, so a reasonable choice of 

parameterization is to match the first two moments of a log-normal discretization process. 

The numerical integration scheme can therefore be expressed in the following form: 

𝑣𝑡+𝑑𝑡 = [𝜃 + (𝑣𝑡 − 𝜃) exp(−𝜅𝑑𝑡)] exp (−
1

2
Γ𝑡

2 + Γ𝑡𝑍𝑉) (57) 

Where: 

Γ𝑡 = ln (1 +
𝜎2𝑣𝑡[1−exp(−2𝜅𝑑𝑡)]

2𝜅[𝜃+(𝑣𝑡−𝜃) exp(−𝜅𝑑𝑡)]2) (58) 

Following the part of the study dedicated to the theoretical description of the most popular numerical schemes associated with the 

Heston bivariate stochastic model, the ensuing sections of the paper focus on their algorithmic implementation and, consequently, 

on the scientific evidence found. In particular, the next paragraph examines the process of estimating the parameters of the dynamics 
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which typically takes place using call and put options listed on the market and written on the same certificate underlying. This 

calibration occurs by comparing the market prices with the theoretical prices computed using the closed formula for vanilla options 

derived from Heston (1993) and successively improved by (Albrecher et al., 2007). 

Once the five characteristic parameters have been estimated, we move on to the programming of the discussed numerical schemes: 

Euler [E], Explicit Milstein [M], Implicit Milstein [IM], Weighted Implicit-Explicit Milstein [WM], Transformed Volatility [TV], 

Balanced Implicit [B], Pathwise Adapted Linearization Quadratic [PW], Kahl-Jackel [IJK] and Moment Matching [MM]. Also in 

section 3, the code and the absence of bias are verified through the comparison between the output of the Monte Carlo simulator and 

the analytical formula provided by Heston (1993) for the case of standard optionality (European calls/puts). Once we are confident 

on the validity of the implemented model, we proceed to the last part of the paper and to the pricing of two investment certificates 

having a highly non-linear optionality and in line with the characteristics that are most requested by customers (Acepi associates' 

primary market 2023 Q1). In this case there are no analytical pricing formulas for certain types of features such as autocallability or 

the memory effect associated with the payment of additional amounts. The comparison therefore takes place exclusively between 

the various numerical schemes and we estimate how many times it was necessary to adjust the variance for each of the integration 

schemes. 

3) Implementation of the numerical integration schemes for the Heston model 

The Heston model implies that the price drift and volatility of a security follow certain laws according to 5 parameters: 𝑉0, 𝜃, 𝑘, 𝜎, 

𝜌.  These parameters cannot be directly observed on the market therefore they must be estimated in order to enter them into the 

Monte Carlo pricing engine. For the calibration, we start from the implied volatility surface of the FTSE MIB and take the 

volatilities of the options traded on the market, then all the parameters are estimated together using a least squares minimization 

(Mrázek & Pospíšil, 2017). It is also possible to assign weights, for example, giving importance to the volatilities deriving from the 

most traded options on the market (the most liquid ones). Such implied surface has strikes ranging from 80% to 120% in terms of 

moneyness while the maturities range from 1 month to 7 years. The calibration is presented as a five-dimension minimization 

problem where we try to minimize the least squares of the differences between the volatilities obtained from the model and those 

observed on the market. Therefore, defining the implied volatility of an option as 𝐼(𝑉𝑖), the problem is as follows: 

 

min ∑ (𝐼(𝑛
𝑖=1 𝑉𝑖

𝑚𝑜𝑑𝑒𝑙(𝑆, 𝑡𝑖, 𝐾𝑖 , �̅�)) − 𝐼(𝑉𝑖
𝑚𝑎𝑟𝑘𝑒𝑡(𝑆, 𝑡𝑖 , 𝐾𝑖))2   (59) 

 

With 𝜙 = (𝑉0, 𝜃, 𝜅, 𝜎, 𝜌) under the following conditions: 𝑉𝑡 ≥ 0,  𝜃 ≥ 0, 𝑘 ≥ 0, 𝜎 ≥ 0 and −1 ≤ 𝜌 ≤ +1 

The closed formula for pricing a European Call Option that pays a continuous dividend within the Heston model pricing framework 

is (Heston, 1993): 

𝐶(𝑆𝑡𝑉𝑡 , 𝑡, 𝑇) = 𝑆𝑡𝑃1 − 𝐾𝑒−𝑟(𝑇−𝑡)𝑃2  (60) 

Where: 

𝑃𝑗(𝑥, 𝑉𝑡 , 𝑇, 𝐾) =
1

2
+

1

𝜋
∫ Re

∞

0
(

𝑒−𝒾𝜙 ln(𝐾)𝑓𝑗(𝑥,𝑉𝑡,𝑇,𝜙)

𝒾𝜙
) 𝑑𝜙   (61) 

𝑥 = ln (𝑆𝑡)  (62)  

𝑓𝑗(𝑥, 𝑉𝑡 , 𝑇, 𝜙) = exp {𝐶(𝑇 − 𝑡, 𝜙) + 𝐷(𝑇 − 𝑡, 𝜙)𝑉𝑡 + 𝒾𝜙𝑥}  (63) 

𝐶(𝑇 − 𝑡, 𝜙) = 𝑟𝜙𝒾(𝑟 − 𝑞)
𝑎

𝜎2 [(𝑏𝑗 − 𝜌𝜎𝜙𝒾 + 𝑑)𝜏 − 2ln (
1−𝑔𝑒𝑑𝜏

1−𝑔
)]  (64) 

𝐷(𝑇 − 𝑡, 𝜙) =
𝑏𝑗−𝜌𝜎𝜙𝒾+𝑑

𝜎2 (
1−𝑒𝑑𝜏

1−𝑔𝑒𝑑𝜏)  (65) 

𝑔 =
𝑏𝑗−𝜌𝜎𝜙𝒾+𝑑

𝑏𝑗−𝜌𝜎𝜙𝒾−𝑑
   (66) 

𝑑 = √(𝜌𝜎𝜙𝒾 − 𝑏𝑗)2 − 𝜎2(2𝑢𝑗𝜙𝒾 − 𝜙2)   (67) 

For 𝑗 = 1, 2 where: 𝑢1 =
1

2
, 𝑢2 = −

1

2
, 𝑎 = 𝑘𝜃, 𝑏1 = 𝑘 − 𝜌𝜎, 𝑏2 = 𝑘 

In the formulas, 𝒾 represents the imaginary unit. 

In the cases considered in this study, let us consider the market data of the implied Black-Scholes volatilities associated with the 

FTSE MIB index as of 16 May 2023, whose surface 𝜎𝐼𝑀𝑃𝐿(𝐾, 𝑇) is shown in Figure 1. 

In order to reach a reliable estimation of the parameters associated with the Heston bivariate stochastic model, we should only 

consider the most liquid European options provided by the Equity/Index markets. 

We have consequently applied a filtering of the options in order to select only the most relevant for the calibration process. 

The first criterion applied is to consider, in case of multiple contributions, the prices characterized by higher traded volumes. 

The second criterion deals with the bid-ask spread: we exclude from the calibration process all the options for which the relative 

distance between the bid and the ask contribution is greater than a threshold 𝛼: 
𝑃𝐴𝑆𝐾−𝑃𝐵𝐼𝐷

𝑃𝐵𝐼𝐷 > 𝛼. Typical values for 𝛼 range between 

50% and 70%. 
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The third criterion regards the so-called “penny option filter”. We exclude all the options characterized by having a Bid price which 

is less than a percentage threshold (𝛽) of the distance of the quoted strike (Δ𝐾): 𝑃𝐵𝐼𝐷 < 𝛽 ∙ Δ𝐾. Typical values for 𝛽 range between 

20% and 30%. 

 

     

Figure 1: Implied Volatility Surface, Continuous Dividend Yield and Risk Free used for testing the numerical integration schemes– 

Source: Bloomberg®  

Filtering the option market data based on the above criteria, 63 options are used to estimate the five parameters characterizing the 

Heston dynamics. The values thus obtained applying the minimization reported in Eq. 59 with the market data shown in Figure 1 are 

as follows: 

Initial Variance: 𝑣0 = 2.923% 

Variance reversion speed: 𝜅 = 2.0517 

Variance reversion level: Θ = 0.05572 

Volatility of variance: 𝜎 = 0.356267 

Correlation between the two Brownian motions: 𝜌 = −0.738102 

Using these parameters, the exact analytical formula for the pricing of a call option was implemented in Matlab with the aim of 

valuing call options with strikes in the moneyness range of 80% - 120% with step equal to 5% (spot equal to the closing value of the 

index on the calibration date, 𝑆 = 27198.9) and a time to maturity in the range of 3 months – 5 years, with quarterly intervals. The 

pricing surface thus calculated is shown in Figure 2. 

 

Figure 2: Pricing Surface of the call options written on the FTSE MIB index, priced with the Heston analytical formula 

The next step was the programming of all the numerical schemes presented in paragraph 2. The comparison between the results 

obtained from the Monte Carlo method and the analytical formulas allows us to understand on the one hand the robustness of the 

discretization schemes (absence of bias), and on the other hand, the potential override of negative variances which unfortunately 

characterize the Euler traditional approach. 

In fact, setting a number of paths equal to 10,000 and a constant discretization interval 𝑑𝑡 of one day, a non-negligible number of 

variances are corrected with the full truncation scheme (see Figure 3). 
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Figure 3: Number of variance corrections in the traditional Euler scheme 

The discretization error introduced by the different schemes in the Monte Carlo remained stable and it is consistent with the 

expectations with respect to the chosen time step. 

Furthermore, it should be noted that in all schemes other than Euler the event of obtaining a negative variance never occurred. 

4) Numerical simulations for different typologies of certificates 
Using market data from 16 May 2023 on the FTSE MIB Index (spot, dividend yield and implied volatility, shown in Figure 1), the 

interest rates term structure (Figure 1) and the five parameters of the Heston dynamics estimated in paragraph 3, we proceed with 

the valuation, according to the different numerical schemes described in paragraph 2, of two investment certificates having the 

characteristics most requested by investors, according to the ACEPI statistics for the first quarter of 2023. 

Both certificates are characterized by the same underlying (FTSE MIB), the same maturity date of 21 September 2026 and they both 

pay coupons conditional on exceeding a barrier level equal to 70% of the initial reference value of the index, which we assumed to 

be the closing value of the index as of 20 September 2021 (25,048.26). 

The value of the conditional amount was set at 3.55% and characterized by an annual frequency, so the four future Coupon 

Valuation Dates are: 20 September 2023, 20 September 2024, 22 September 2025 and 21 September 2026. We assumed for 

simplicity of account that the payment dates of the coupon coincide with the valuation dates. 

Both certificates analyzed have conditionally protected capital at maturity: if the underlying index at maturity (September 21, 2026) 

is above the barrier level, set as the coupon trigger equal to 17,533.78, then the entire amount invested in the certificate will be 

returned; otherwise the negative performance of the underlying will be paid (thus, the redemption is characterized by a traditional 

pay-off of a short position in a barrier put option with a “European” observation of the barrier level (Giribone and Revetria, 2021), 

i.e. only at maturity). 

The two certificates, on the other hand, differ for two aspects: the first structured product is characterized by standard digital 

coupons and no autocallability, while the second envisages both the memory effect and the possibility of early automatic callability 

if, on the Coupon Valuation Dates, the underlying index exceeds the initial reference value (i.e., 25,048.26). 

It should be remembered that by memory effect we mean an interest payment that is carried over to the next observation dates if the 

product, at a given valuation date, fails to meet the coupon payment requirements as defined in the structure. 

However, if payment requirements are met at a certain valuation date, all coupons that have not previously been paid will fall due 

for payment at such date. 

We can express the rule for the payment of the t-th conditional amount in accordance with the following formula: 

 

𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 × [𝑡 − 𝑡ℎ 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐴𝑚𝑜𝑢𝑛𝑡[%] + 𝑀𝑒𝑚𝑜𝑟𝑦 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐴𝑚𝑜𝑢𝑛𝑡 [%] × (𝑡 − 𝑘 − 1)] (68) 

 

Where 𝑘 can assume values between 0 and the number of coupon payment dates and indicates the value of 𝑡 corresponding to the 

last conditional additional amount event. 

The pay-offs of the two certificates analyzed in this study are quite popular and their features are classified in accordance with the 

EUSIPA (European Structured Investment Products Association) derivative map under the identification code 1260 - Express 

Certificates with additional coupon amount. ACEPI has adopted the same European classification typology. 

Given that these two structured products are characterized by standard financial features, we suggest consulting the websites of 

these two associations for further information on the payoff mechanics. In order to value the two certificates, 500 replications of 

10,000 simulations each have been implemented on the underlying index, with a daily time discretization step, until the maturity 

date. 
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The adjustments for the negative variance, applying the full truncation scheme, were only necessary in the case of the Euler 

integration method. The distribution of the total number of times for which the full truncation scheme was invoked throughout the 

10,000 simulated paths for the 500 replications is shown in Figure 4. As regards the determination of the fair value and its measure 

of dispersion for the two certificates, all the calculated outputs resulted in line with our expectations given that we have replicated 

these calculations using other pricing modules, such as the library provided by Bloomberg ® - DLIB. All the results shown in Table 

1 have been estimated using the same seed values for the generation of the random numbers stream for each replication. We 

consider this part very important in order to fairly compare the Monte Carlo outputs across the different numerical schemes. The 

results for the first and the second certificate are obtained using 10,000 paths and a discretization step equal to one day. Only a slight 

discrepancy is shown in correspondence with the approximation introduced by Moment Matching. 

 

Figure 4: Distribution of variance adjustments in the traditional Euler numerical integration scheme in the example of investment 

certificates pricing 

 

 

Table 1: Pricing of the two certificates with different numerical integration schemes. All the measures are expressed in Euro and 

assuming a nominal value equal to 1,000 

Further experiments have been conducted relaxing the constraints imposed on the seeds of the random number generator, with the 

aim of having the certainty that the results have not been compromised by the specific choice of the random source.  

We have made ten replications for a number of simulations that varies from 1,000 to 20,000 with a step equal to 1,000 for both 

certificates. The alternative numerical schemes that we have implemented display similar performances (see Figures 5 and 6). This 

similarity can be explained considering that the adjustments for negative variances have never been used for all the simulations, as a 

result the positive effects on the fair values estimation introduced by the implementation of these schemes is clear. 

In order to understand if the performances of the alternative integration methods also work well in a stressed scenario, we have 

replicated the same pricing experiments using the shocks of the European Banking Authority (EBA) 2023 available on the 

institution's website (https://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing). 

In particular we have applied the following shocks: 

- a relative change in the spot level equal to -58.2%. 

- an absolute change in the yield of interest rates term structure equal to: 152 bps up to 1 year and 167 bps from 1 year to 5 years. 

Zero-rates in the periods have been linearly interpolated. 

- an absolute change in the credit spread of the issuer equal to + 171 bps, as a result we move from a risk-free to a risk-adjusted 

evaluation. 

- a relative change in the Equity volatility of 268 basis points applied to the Heston 𝑣0 parameter. 

Numerical Integration Scheme Fair Value Cert 1 St. Dev. Cert. 1 Fair Value Cert. 2 St. Dev. Cert. 2

Euler [E] 925.2473 2.1653 970.7499 1.4981

Explicit Milstein [M] 925.2754 2.1724 970.7566 1.4985

Implicit Milstein [IM] 925.3123 2.1683 970.7601 1.5012

Weighted Implicit-Explicit Milstein [WM] 925.2952 2.1706 970.7576 1.5008

Transformed Volatility [TV] 925.2381 2.1741 970.7435 1.4993

Balanced Implicit [B] 925.2437 2.1528 970.9811 1.4925

Pathwise Adapted Linearization Quadratic [PW] 925.2174 2.1716 970.7295 1.5011

Kahl-Jackel [IJK] 925.2173 2.1575 970.7443 1.4961

Moment Matching [MM] 926.3386 2.0658 967.6476 1.5211
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As shown in Figures 7 and 8, the price collapses and the severe shocks do not compromise the performances of the alternative 

methods in terms of the number of negative variance adjustments and, consequently, the standard deviations of the ten replications 

expressed in function of the number of paths maintain the similarity. 

 

 

 

Figure 5: Prices and Standard Deviations of the Monte Carlo Outputs for the first Certificate as the number of paths varies – Base 

Scenario 

 

 

 

Figure 6: Prices and Standard Deviations of the Outputs for the second Certificate as the number of paths varies – Base Scenario 

 

 

 

 

Figure 7: Prices and Standard Deviations of the Monte Carlo Outputs for the first Certificate as the number of paths varies – 

Stressed Scenario 
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Figure 8: Prices and Standard Deviations of the Monte Carlo Outputs for the second Certificate as the number of paths varies – 

Stressed Scenario 

The Heston model is one of the most widespread pricing frameworks in the financial industry as it allows a good trade-off between 

the complexity of the model, capable of efficiently representing the dynamics of the underlying price together with the volatility, 

and the possibility of estimating its characteristic parameters starting from the Black-Scholes log-normal volatilities through an 

analytical formula. It should be remembered that if we remove the stochastic contribution of the variance, we obtain the traditional 

dynamics of the Brownian geometric motion ruling the Black-Scholes-Merton pricing framework (which 50th anniversary occurs 

this year). This is achieved simply resetting the parameters of the variance reversion speed and the volatility of the variance. This 

reconciliation ultimately gives an idea of the potential pricing gap due to the choice of a different model and helps the trader to 

compare the prices of structured products valued according to different pricing approaches compared to the market standard 

(Giudici and Pagnottoni, 2019), (Giudici, Pagnottoni and Polinesi, 2020). 

5) Conclusions 
In this study the most popular numerical integration schemes for the Heston bivariate dynamical system (𝑆𝑡 , 𝑣𝑡) or (ln 𝑆𝑡 , 𝑣𝑡) 

(Rouah, 2013) have been described and implemented. The methods which do not intrinsically admit the generation of negative 

values of the variance proved to be particularly interesting from a theoretical point of view. Among the analyzed methods, we cite 

the Transformed Volatility scheme (Zhu, 2010), the Balanced Implicit Scheme (Platen & Heath, 2009) and the Moment Matching 

(Andersen, 2008). Applied to the pricing of the most common investment certificates, the Moment Matching method has shown a 

lower convergence performance compared to the other techniques. Considering in addition the study by Kahl and Jäckel (2006) in 

which they showed that the convergence of the Balanced Implicit Scheme does not always prove to be uniformly valid, we can 

conclude that the Transformed Truncation Scheme has recorded results in line with theoretical expectations in the pricing of 

structured products and that it is also verified a priori that it is impossible for a negative variance to be generated in the asset 

projections. It is important to point out that there are other integration schemes for the Heston model in the literature, among which 

we mention the exact one proposed by Broadie and Kaya (2006). Indeed, the latter has a very important theoretical relevance as it 

ensures an exact numerical resolution of the integration problem, although it is difficult to implement in practice (Van Haastrecht 

and Pelsser, 2010) and the numerical processing times can be quite long (Bottasso et al., 2023a).We consider it interesting for the 

continuation of the study to test the methods discussed in this paper, in particular the Transformed Volatility scheme and possibly 

others, that guarantee from a theoretical point of view the intrinsic positivity of the stochastic dynamics of the variance, on other 

types of certificates in order to generalize the conclusions in a multi-asset context. 
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