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Abstract

The correct modeling of the interest rates term structure should definitely sidered an aspect of primary importance since
forward rates and the discount factors used in any financial and rislsiarealy calculated from such structure. The turbulence ¢
markets in recent years, with negative interest rates followed by their recent substarttie pegpd of the COVID pandemic cris
the political instabilities linked to the war between Ukraine and Russia haveftemyjen to observe anomalies in the shape o
interest rate curve that are difficult to represent using traditional econometric modedpdinttthat researchers have to address
modeling problem using Machine Learning methodologies. The purpose sfutlisis to design a model selection heuristic wh
starting from the traditional ones (Nelson-Siegel, Svensson and de Rezende-FgrteitheuGaussian Process (GP) Regressid
able to define the best representation for a generic term structure. Ttoadppas been tested over the past five years on
structures denominated in five different currencies: the Swiss Franc (CHF), théEElRY the British Pound (GBP), the Japan
Yen (JPY) and the U.S. Dollar (USD).

Key Words: Interest rates term structure, Nelson-Siegel model, Svensson model, de Rezeridehedel, Gaussian proce
regression.

JEL code: C52-C53-C55-E43-E47

1. Introduction

The correct estimation of the interest rates term structure is of primary impontarfoefcial analysts, risk managers, actua
experts, and policy makers. Precisely to meet this specific need, a substénmi#icsliterature has developed aimed at its cor|
model representation.

One of the first advanced approaches is the smoothed bootstrap initipthgeddy (Bliss and Fama, 1987). They proposed to d
zero rates from raw market data and then fit them to the data with a smooth angocsntunrve.

To this end, numerous curve fitting spline methods have been empémaattatic and cubic splines (McCulloch, 1971 and 19
exponential splines (Vasicek and Fong, 1982), B-splines (Shea, 1984%tartty, 1991), quartic maximum smoothness sp

(Adams and Van Deventer, 1994) and penalty function-based splines (FisctigkaMyd Zervos, 1994) and (Waggoner, 1997).

These approaches have been criticized by (Annaert et al., 2012) beeguarethharacterized by unwanted economic properti
they are statistical techniques that do not incorporate micro-macro economic principlesfimttieining.

(Seber and Wild, 2003) also highlight that these methodologies contribute tg aalblack-box" type of interpretative effect a
therefore should be avoided in contexts of standard financial marketsofreéufibulence.

(Nelson and Siegel, 1987), (Svensson 1994 and 1996) and, sebttgdde Rezende and Ferreira, 2013), approached the prob
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obtaining a smooth bootstrap through nonlinear regression models &ibleasonably well for different families of term structure

shapes observed on the financial markets.

These models are parsimonious, consistent with the theoretical interpretation of thé&uetumessuggested by (Litterman a
Scheinkman, 1991) and held in high esteem by both academics and professionals.

Let us consider, for example, that the Nelson-Siegel model and the Sveraalrare extensively used by central banks and mon
policy makers (Bank of International Settlements, 2005) and (Europearal®emk, 2008).

It should be noted that non-linear models and in particular those which enthsagstimation of a large number of parameterg
be subject to potential instability in the calibration phase, having to resortumerical optimization routine, which most timeg
constituted by an algorithm of local search for solutions, generallasi-tiewtonian one such as L-BFGS (Nocedal, 1980)
Direct Search one, as a simplex by (Nelder and Mead, 1965).

(Cairns and Pritchard, 2000 KRZ WKDW WKH HVWLPDWHY Rl WKH 1HtBesR@rd\aldds-i€edARt
optimization. Moreover, time series of the estimated coefficients have been doaliteebéevery unstable (Barrett, Gosnell &
Heuson, 1995), (Fabozzi, Martellini and Priaulet, 2005), (Diebold ang006), (Gurkaynak, Sack and Wright, 2006), (de Po
2007).

Finally, the standard errors on the estimated coefficients, though seldotedepoe too large (Annaert et al., 2012).

In addition to the potential technical-computational problems mentioned above, weé also consider the fact that a traditio

econometric model assumes a priori the functional form according to which the skategeobon the market should be explained,

This approach should be pursued whenever possible, typicallygcheitods of stable, non-turbulent financial markets.

If we consider the anomalies that have recently characterized the financial markets, amomgewhatition: the issue of negati
interest rates and their subsequent sharp rise, the current inflationary contexd anddimg war in Europe between Ukraine
Russia, then it could be considered as incongruous to use canonical econooudhctorepresent the interest rates term struc]
This aspect has already been highlighted by various studies in which a "htt@pproach was implemented, i.e., starting fron
data, without making a priori hypotheses on the shape of the funétioa interest rate curve, the problem was tackled with Mag
Learning paradigms (Giribone, 2023).
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Among the statistical methods pertaining to this family, the Radial Basis Functié) (Biral Network (Cafferata et al., 2019) and
the feed-forward Artificial Neural Network (Caligaris and Giribone, 2015) aréhwoentioning.
As has been reiterated in (Cafferata, Giribone and Resta, 2018) it should lesieegblthat the use of Machine Learning methods
and particularly those connected with Deep Learning should somehow be judtifiednreasonable to adopt statistical methods
which are more sophisticated than necessary if market conditions do not requifé¢hiee are no available quotes.
We have chosen the Gaussian Process (GP) regression for performing théstase it is a methodology that is able to work yith
relatively little data available. It also inherited some theoretical principles common teiwdifforocesses (see third section of|the
paper) and it has been shown to produce good results in similar fingsgliahions (Gonzalveet al, 2019).
The present study fits into this context and proposes a heuristic of cleticeeh different models for the correct representatign of
the interest rates term structure. The proposed algorithm, starting frommtiess traditional econometric models (Nelson-Siegel

and Svensson) and reaching the most complex ones (de Rezendexf-@valuates their performance in terms of goodness [of fit
(adjusted4®) and estimation stability of the coefficients (analysis of confidence baddsugiers). Only if the traditional approaches

are not in line with expectations, the heuristics would automatically implement a Machinageaethod: the approach proposed

in this paper is a Gaussian process regression with an automatic selectiogrentdiférnels.
The selection heuristic was tested on interest rates term structures over the lastdiver ybtierent currencies (USD, CHF, GBP,
EUR, JPY), each characterized by different financial instruments from which theeaativrates were derived (Deposits, Futures,
FRAs and Swaps).
The following section summarizes the main features of the traditional econometigtsniar representing the interest rates term
structure (Nelson-Siegel, Svensson and de Rezende-Ferreira). The third Blestiates the operating principles of a Gaussian
Process Regression providing evidence of how an incorrect or unsatisfamideling reached with the previously mentioned
approaches can be solved. The fourth section illustrates the operational Ittggcnuddel selection heuristics in detail and applies
them to different case studies. The last section provides the statistics that emengie fatgorithm and draws the conclusions of
the study.

2. Non-linear parametric models

(Nelson and Siegel, 1987) were the first to introduce a simple model fagdhtates that also has a satisfactory predictive ppwer
both for short and very long maturities; these characteristics make it a still redgn@otach both for scholars and professionals.

Many researchers over the years further developed this model. Amongatiyecontributions, the approaches presented here are
those proposed by (Svensson, 1994) and (de Rezende and F2&oE¥aZKR DV ZLOO EH H[SODLQHG DGGH
formula in order to have a better fit for the term structure under particulamstances.

2.1 The Nelson Siegel model

A class of functions that generates the typical yield curve shapes is that associateautiithssto differential equations. The
expectations theory of the term structure of interest rates provides heuristiatiootfer investigating this class since, if spot rates
are generated by differential equations, then forward rates, being forecasts, thél dolution to the equations discussed in (Nglson
and Siegel, 1987). The researchers explored two cases:

- The instantaneous forward rate is the solution to a second order diffieeguation with real and unequal roots.
- The instantaneous forward rate is the solution to a second order diffieeguation with real and equal roots.

In the first case the instantaneous forward rate is defined as:
(:RPLUEUY, 3’ @R E {3’ @FAL)

However, tests made by Nelson and Siegel showed that fitting the model considerdh@s forward rates resulted |in
overparameterization and they explained this in two ways: firstly, they obstevéact that changings and ig caused almost no
change to the fit obtained and, secondarily, using statistical software, thedesdbed failed to satisfactorily converge to a robust
solution.

For these reasons Nelson and Siegel studied the second case. The forwaalgaligtias for a differential equation with equal ropts
is:

(:PLUEUY, t3 @FEJEA 13 @)

Integrating the formula for the spot rate they obtained:

[

i . . . A
4RLGEGE ¢ — T g, 15 @A)
Or in the more canonical form:
.. o@tAC . > @ AC
4R L YEY e g, TR 1 @R
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Nelson and Siegel show that functi@) is able to capture the typical shapes assumed by interest rate term structures} ook
closely at the function and at the meaning of the coefficients, the threan be seen as the strength of the different term, i
measuring the weight of the long-term ratésthe weight of short-term rates atgthe weight of the medium-term rates. This K
of interpretation depends on thidactor, that is considered as a time decay factor which affects mostly theéeshodomponent
only mildly the mid-term one and does not influence the long-term part at all

An example of this model at work is shown for two cases, one in which the oaodshtisfactorily explain the behaviour of inte
rates and another one in which instead it fails to converge at all (Figure 1).

10 £10° Currency: EUR | Reference date 09-Mar-2022 G Currency: CHF | Reference date 28-Oct-2019
£ 0.015 -

*  Stripped zero rates
Nelson Siegel mode!

*  Stripped zero rates
Nelson Siegel model

0.01 |

0.005 -

0.005

-8 . = = 4 . = v . -0.01 "I o - -
Figure 1: The Nelson Siegel model: good fitting versus poor fitting

2.2) The Svensson model

(Svensson, 1994) proposed a new version of the Nelson and Siegel meldighrthe author added a further term in order to cat
second hump and thus increase the flexibility of the model. The foratedunction for the Svensson model is as follows:

((PLUEY, t5 GREJSA S BREUSA 5 @Kb5)
Applying the formula of the spot rate by integrating the forward rate, the mmtidn defining the spot rate is:

. . B52c@CAC_ . BS?C@LAC_ . .BS?c@tAC_
4RL WEY ————EY,H——F 15 @RI EQH———F 15 @R

The fourth term, made of two parametdssand i (which must be positive) is then able to capture a term structure whish
includes two humps. The interpretation of the other terms remains the same.

Svensson proves that the Nelson Siegel model goodness of fit is fulfillingsincases, but sometimes, when the term structure
proves to be more complex, the extended model can improve the fit in a signifigant

1073 Currency: EUR | Reference date 09-Mar-2022 10° Currency: CHF | Reference date 28-Oct-2019

*  Stripped zero rates *  Stripped zero mlc-s‘
Svensson model

Svensson model

L L 1l L L 1 1
30 40 50 60 0 5 10 15 20 25 30 35 40

Figure 2: The Svensson model: good fitting versus poor fitting
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2.3) The de Rezende and Ferreira model

(de Rezende and Ferreira, 2011) introduced a model that further develdpsithn Siegel and the Svensson models, adding a fifth
factor to address an additional need for flexibility. The new formulaspiorand forward rates are:

((RLUGEY, s EREPSALS @R E{J@Aié'@ﬁ E@Aig’@;m)

. . B5?2C@EAC_  BS?PC@EAC . BSPc@tAC
4RL YEY————EYH————FI8@AE {H——— F13@AE
_ /B5?2c@SAC

E 8U-If’ F ié@—fm(za)

We notice that the fifth term proposed recalls the one introduced by Smeiidsointerpretation for this new term is that of a segond
slope of the curve (to catch a third hump), while the interpretation otlkee terms remains unaltered.

This model is expected to work well in case of a very complex and twistegl sarin those few cases in which the preceding models
may fail to fit or tend to underfit.

1073 Currency: CHF | Reference date 28-Oct-2019 a4 Currency: EUR | Reference date 25-Mar-2020
] *  Stripped zero rales
De Rezende Ferreira model

. Stripped zero rates
De Rezende Ferreira model | 0.008 +
. .

0.006 -

0002 H\,*
0.004 +
0.006

-0.008

-0.01 "

30 35 60

Figure 3: The de Rezendgerreira model: good fitting versus poor fitting
3. A Machine Learning approach through a Gaussian process regression
There are many ways to interpret GP regression models, and following the woakroftissen and Williams (2006) there are two
main approaches to GPs:
-A weight-space view: the typical way of looking at a regression model, mostlgdd on parameters.
-A function-space view: considering GP as a distribution over functions.

In both cases Bayesian Linear Regression (BLR) is involved and indeed wentaof GPs as a generalization of this peculiar type
of regression.

BLR takes advantage of normal distribution properties (conditioning andmakizgtion) in order to analytically solve the regression
problem. It is composed of three elements: Prior distribution, Likelihood astdriRw distribution.

3.1 The Weight-space view
Given the dataset& L «Tia & E L s a ®, &d lnear regression model is:
Bz, L 3+EY 2;EVY LB :¥ag(9)
Where Zis the input vector,s is the vector of weights (i.e. parameters) of the linear magid, the function value andlis the
observed target value. We have assumed that the observed \dliffes from the function valuesB: Z; by additive noise, which

follows an independent, identically distributed Gaussian distribution with zero aneararianceé$.

This noise assumption, together with the model directly gives rise to the likelitheogrobability density of the observations giyen
the parameters, which is factored over cases in the training set because afgbhadedce assumption to give

. ~ s ~ 4 10 she o . . .
LV, a% LA gk TasL A%@—S%U:t? F!f'o';ez° GL— :U X3 @64% YE[ ebaLe, +a8+(10)
U
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Where denotes the Euclidean length of vectpr+s the identity matrix of dimensiod. In the Bayesian formalism we need|to
specify a prior over the parameters, expressing our belief about the pasdeédes we look at the observations. We put a zero mean
Gaussian prior with covariance matri on the weights» 1 & k U &

Through Bayes theorem it is possible to find the posterior distributitreqfarameter:

uuaax Uaa
ZKOPAN/EOaUUaOB Au@uﬂééx

Considering the particular case of

aYaa

Lie Ya;L ' (12)

The marginal likelihood as the name suggests is found through marginalizatiagh isrindependent from the parameters (the
parameters are marginalized out). Analytically, it can be written as:

LY,;LiLY,a«Le;@ {13

The posterior in Eq.12) combines the likelihood and the prior, and captures everything we know abgatrétmeters. Writing only
the terms from the likelihood and prior which depend on the weightsbtaeo

20 JAVR T8 Ff—u:\"( Fle:VFEleiGt8 @F RE5AR £ FRe F % @%' E R5A:s F %;G14)

Where % L 8%k &6, ' E @50? ® ¥ and we recognize the form of the posterior distribution as Gaussian with $head
covariance matrix#’ >

Lie ,aYle @% £ #°5,Va ¥A15)

U
Where# L &26,, " E §%(Rasmussen and Williams, 2006). Notice that for this model (and ifideady Gaussian posterior) the
mean of the posterior distribution:» , & Yis also its mode, which is called the maximum a posteriori (MAP) estimate of
To make predictions for a test case we average over all possible parametsy walghted by their posterior probability. Thus the

predictive distribution forB, L B: Zg; at Zgis given by averaging the output of all possible linear models with refeterthe Gaussian
posterior

LB Za, & Wi LB %4 sLie ,at@e- L &-@25#°5, U ak#’570A16)
V)

The predictive distribution is again Gaussian, with a mean given by the postedn of the weights from E{L5) multiplied by the|
test input, as one would expect from symmetry considerations. €tifive variance is a quadratic form of the test input with the
posterior covariance matrix, showing that the predictive uncertainties grow with tingudagpf the test input, as one would expect
for a linear model.
The Bayesian linear model suffers from limited expressiveness. A simple ideertmme this problem is to first project the inputs

into some high dimensional space using a set of basis functions angphetha linear model in this space instead of directly on the
inputs themselves. As long as the projections are fixed functions (i.e. indepeftenparametera ) the model is still linear in the
parameters, and therefore analytically tractable.

Specifically, we introduce the functio@ : Z which maps&dimensional input vecto# into an 0 dimensional feature space. Further
let the matrixO : ,, ; be the aggregation of columris: Z for all cases in the training set. Now the model is

B:z; Ll.17)

Where the vector of parameters has len@thThe analysis for this model is analogous to the standard linear modedt thaie
everywhere0 : , ;is substituted for,. Thus thepredictive distribution becomes

B Zga,aU 18 &7y #750 U a:dg; #756:25,G(18)
u

With 0 L 0:,;and# L &°00' E {5 To make predictions using E(.8) we need to invert thét matrix of size0 H Owhich
may not be convenient i@, the dimension of the feature space, is large. However, we can rewrite theregutitefollowing way:

BZpa,aU 1dkd:- E &8+°5Ual6,04F 65-50:- E &+?%01 -, 6 ¢19)
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Where we have used the shorthaddzg, L 6pand defined- L of -50. To show this for the mean, first note that using
definitions of #and - we haveé?%0:- E &+ L &°0kd -;0 E &+0 L #0.

Now multiplying through by #°° from left and :- E &% +7° from the right gives&?%#°°0 L -;0:- E &+75 showing the
equivalence of the mean expressions in(E§) and Eq(19). For the variance we use the matrix inversion lemma, settfifgL -,
97?5 &f+and8 L 7 L Qherein.

3.2 The Function-space view
*DXVVLDQ 3URFHVVHY DUH GHILQHG DV 3D FROOHFIWIRFFX KIDY B QG RR LYW L1
(Rasmussen and Williams, 2006).

A Gaussian process is completely specified by its mean function and covéuiactien. We define the mean functidn Z ; and the
covariance functionG : Z & df'g real procesS : 7as:

| :Z; L g3B:2; 720)
GzazL qckB;F1l:Z;,0kE'F1:Z%¢g
And will write the Gaussian process as:
B:7;1)2kl:%;4 G & 70(21)

A Gaussian process is defined as a collection of random variables. Thudefithiiton automatically implies a consisten

requirement, which is also sometimes known as the marginalization property. dp&tprmeans that if thg 2 e.g. specifie$

‘UYadJlé /4 then it must also specifit 1 e :&a 55 where -5 5is the relevant submatrix of

This can be seen as the prior over functions. According to thisipifopossible to define the joint distribution & the training
outputs andBjthe test outputs:

a,Eé,f’+ aU’hpZZ)

B 1e|rad
§ Ua ) UaU1

From this joint distribution, the predictive distribution can be derived, thasibefore, the conditional distribution 8given Zga
and U

2:B2d 24 U; 45050 agF -o- 75 §:(23)

That is exactly the same function defined in the weight-space view. Procéadingh these steps, the reason why GP regress|
considered a generalization of BLR becomes clear: GP regression uses kernels inssadfohctions to find the families of t
functions for regression.

Using kernels allows to define a very broad family of functions that basis fos@lone could not handle. This makes GPs n
flexible as it is still possible to implement the Bayesian update and reach a good ppsdiative fit.

3.3 Kernel functions and hyperparameters
Kernel functions control the model, they determine which kind of functiowis or less likely to be sampled. The kernel is a fung
that measures how similar two inputs are and therefore it is quite clear whyisatbrfs are used to produce covariance matric
GPs.

Let us suppose we haveand z” the kernel function is:
Gz a%l;(24)
7and Zfican refer to any two objects, provided that we can measure similarity betweenl iseamvector of hyperparameters us

to tune the kernel function. The output of the kernel function will biendasity measure, large and positive if the inputs are
similar, large and negative otherwise.

There are technical restrictions on which functions can be used as kernels, somatt@ce matrix must be positive definite (|
reason for this restriction is based on the (Mercer, 1909) theoremindded comes down to which prior functions are likely tg
sampled and this is dictated by the kernel, meaning that this aspect is fundamisrgakdntial to decide what makes tWsimilar
or dissimilar.

The idea is that GP will sample functions with clodealues for Zdeemed similar by the kernel. In order to clarify this cong

consider the Squared exponential kernel function (or RBF function), onerobtaised for Gaussian Processes:
Gza%i L &+8" IF-2p E §(25)

Hyperparameters in the squared exponential are as follows:

% length scale. It scales distances betweeniiiiteneans that if°is a small value, most input pairs are considered different, an
LPSOLHY WKDW WKH VDPSOH IpdQ.RWis Rri@evorRieQthez hahd,nbist ifp Rt Paits Wilbbe considered si
leading to smoother sample functions. Intuitively, this function tells how féiawe to go before things become virtually uncorrelg
with one another.
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&% output scale (or signal variance) determines the scale of the y valégindfeases, the function spans a bigger part of the y
if it decreases, the opposite holds.

axis;

&% fnoise variance. It is not a direct parameter of the kernel function, but @ricéis the likelihood function from which the optimal

values of§$and °are found.

But how do we find the values for these parameters? As anticipated, the likelihoctibrf plays a fundamental role.

The i vector determines how kernel measures similarity.
The idea is to select those hyperparameters that maximize the log likelihdiadter integrating out possible functions.
The idea is to optimize (i.e., find the maximum of):

Z2:Uz4188 ZiL:UB&Se2:B74;1@ @&6)

Computing Z 2:U 7 & 1 §;@&ssentially means finding hyperparameters that improve the fitting of the dasigttha function B
sampled by the prior, and this is done over an infinite numbsarople functions.

Intuitively we want to pick the hyperparameters where the prior functions explaiatthérdhe best way, thus hyperparameters for

which the Bfit the data well without conditioning.
This means that:
Z2:Uz4188720:UV4&=:4:;E &+(27)

The gradient of this function can be computed with respect to the hyperpasaréteiprobability function is differentiable, her

any algorithm based on gradient is able to obtain hyperparameters that maxinpimebti®lity. With GPs we can optimize a huge

number of hyperparameters.

There are many types of kernels, and the designer can even decidéiioecthrem by adding one to the other (sum of kernels
that two functions are sampled and thenth¥ P R1 WKH WZR OHD G VorwRtiplyikg-brie iogh® @tierNH U Q H O

This allows to create more complicated models that can better explain data.

An application of this Gaussian Processes could be done in the fitting of thewtieds for which the parametric models in the

previous chapter gave poor results. The results of the GP regression aedrapbigure 4.

0.015
0.01

0.005 |

O  Training data
+  Testdata

0.005 GPR predictions
[ ] 55% prediction intervals |
G.Oﬁ 1 1 1 1
0 5 10 15 20 25 30 35
0.015

0r Training data

+  Testdata
0.005 | GPR predictions
||: 95% prediction intervals
0.01 = B 1 =) 1 I |
0 10 20 30 40 50 60
g ¥
U L
@'O ©  Training data
5S¢ 5’*’ + Testdata
.@G GPR predictions
[ 195% prediction intervals |
10 Il 1 Il ]
0 5 10 15 20 25 30 35

Figure 4: Gaussian Process applications for the previous poardittases
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The kernel functions considered in this study are:

- Squared Exponential: already discussed in this section.

- Exponential: ‘
Gza%L €13 @FEZA29)

Both the Squared Exponential and the Exponential kernel functions workwgliifer smoother functions, while in case of functig
with kinks or local structures, other kernel functions, such as the (Mag8®), perform better.

- Matérn 3/2:

Gza%L & @sE2A rs A2 A29)

- Matérn 5/2:

ra%L & ls E22E X2 p iy @22 A30)

In short, the Matérn kernel functions tend to be more flexible as thaeledved by considering a smoothness parameter with
3/2 and 5/2 in the cases considered here. Higher values of the smoothaesstgraresult in smoother and more differentia
functions.

- Rational quadratic:
L2
Gza%L §ls EL > p (31)
Where Uis a positive scale parameter.

The Rational quadratic kernel function incorporates a balance between shordihgeg-range correlations. This is possible thg
to the scale parametdd A higher . value results in a smoother function, capturing long-range correlationsefSely, a lower.
value leads to a rougher function that emphasizes short-range correlatiorgedisethat as the value afchanges, a higher weig
is assigned to a different section of the curve.

An Automatic Relevance Determination (ARD) version of all the previous kernels capledao any kernel function that hag
length scale. This method, by introducing a separate length scale paramesahfarput variable in the covariance function of
GP model, is a check for the relevance of the input variable.

When the length scale for a particular input variable is small, the GP modehd®omore sensitive to variations in that varia
conversely, when the length scale is large, the GP model becomes less sensitiatidos/ar that variable.

The ARD kernel functions are then:

- ARD Squared exponential kernel:
GzafL +5 |ma@;—'p(3z)

- ARD Exponential kernel:

i

Gza%L & 15 OF 55> A33)
O
- ARD Matérn 3/2:
Gra%L & g1 Ad 2§ ié’ x5 1818 34
Za g @s u@—s 5 U@_SOO‘A( )
- ARD Matérn 5/2;
a%L &ls E%NAU@%E AU@%p 3 @AY 29 N35)

- ARD Rational quadratic:
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4. Case Study

The methodologies described previously will be used to model the interest rates tetanestaonsidering different time periodls,

different currencies and

examined starts from®lJanuary 2018 and ends orf'2darch 2023. Five currencies have been considered: the Swiss Franc

for each currency different financial instrumentsrdaggdo their market liquidity). The time range

CHF

the Euro (EUR), the British Pound (GBP), the Japanese Yen (JPY) andthiadllar (USD).The instruments used to model the term

structure for each currency are: swaps for CHF, GBP and JPY; depositr,deand swaps for EUR; deposits, futures and s
for USD. The granulometry for each currency, with the corresponding tmohinstruments, is shown in Table 1. Data used in

waps
this

study can be considered in line with the best market practice given that theriaxed from the Bloomberg® yield curves module.

Zero rates and discount factors for each eligible date in the time span havgobesdrapped from market rates. The eligibility
dates depends on one criterion; the number of par rates available; if the naitesrage more than ten, the date is considered ineli
In case the number of missing rates is less or equal to ten, the missing ratesmdtpolated, and the zero rates will be compy
This selection process is further developed in the flow chart depicted ire Bigu

of
gible.
ted.

Y

ParRates;

NaN
elements
<10?

No

b{ i=i+1

Bootstrap

l

ZeroRates;; DiscountFactors;

Figure 5: Selection process for the Zero rates stripping étigar

Instruments per currency

Starting date:  01,/01/2018 End date:  03/21,2023

CHF EUR GBP JPY USD
Term  Instrument Term Instrument Term  Instrument Term Instrument Term Instrument
W~ Swap 6M Deposit 1W Swap W Swap 3MO Deposit
2W Swap FRA1X7 FRA 2W Swap 2w Swap FUT_1 Futures
IMO Swap FRA2XS FRA IMO Swap 3w Swap FUT_ 2 Futures
2MO Swap FRA3X9 FRA 2MO Swap IMO Swap FUT_3 Futures
3MO Swap FRA4X10 FRA 3MO Swap 2MO Swap FUT _4 Futures
IMO Swap FRA5X11 FRA IMO Swap 3MO Swap FUT_5 Futures
SMO Swap FRAGX12 FRA 5MO Swap IMO Swap oY Swap
6MO Swap FRA9X15 FRA 6MO Swap 5MO Swap 3Y Swap
™0 Swap FRA12X18 FRA ™O Swap 6MO Swap 4Y Swap
8MO Swap 2Y Swap 8MO Swap ™O Swap 5Y Swap
9MO Swap 3Y Swap 9IMO Swap SMO Swap 6Y Swap
10MO Swap 1Y Swap 10MO Swap 9MO Swap Y Swap
11MO Swap 5Y Swap 11MO Swap 10MO Swap 8Y Swap
12MO Swap 6Y Swap 12MO Swap 11MO Swap 9Y Swap
1SMO Swap 7Y Swap ISMO Swap 12MO Swap 10Y Swap
2Y Swap 8Y Swap 2Y Swap 15MO Swap 11Y Swap
3Y Swap 9Y Swap 3Y Swap ISMO Swap 12Y Swap
4Y Swap 10Y Swap 4Y Swap 2Y Swap 15Y Swap
5Y Swap 1Y Swap -3 § Swap 3Y Swap 20Y Swap
6Y Swap 12Y Swap 6Y Swap 1Y Swap 25Y Swap
7Y Swap 15Y Swap 7Y Swap 5Y Swap 30Y Swap
8Y Swap 20Y Swap 8Y Swap 6Y Swap 10Y Swap
9Y Swap 25Y Swap 9Y Swap 7Y Swap 50Y Swap
10Y Swap 30Y Swap 10Y Swap 8Y Swap
12Y Swap 0Y Swap 12Y Swap 9Y Swap
15Y Swap 50Y Swap 15Y Swap 10Y Swap
20Y Swap 20Y Swap 11Y Swap
25Y Swap 25Y Swap 12Y Swap
30Y Swap 30Y Swap 15Y Swap
40Y Swap 20Y Swap
50Y Swap 25Y Swap
30Y Swap
3BY Swap
10Y Swap

Table 1: Financial instruments used for bootstrap and Interest ratessructures granulometry
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After this preliminary filter, the initial 1362 dates for each of the five currenciesret849 for CHF, 1342 for EUR, 1326 for GH

1293 for JPY, and 1347 for USD.

The surfaces of all the stripped zero rates and discount factors, dividedéycy, are reported from Figure 6 to Figure 10.

Zero rates - CHF Discount factors - CHF
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Figure 6: Term structure and Discount factors surface - CHF

Zero rates - EUR Discount factors - EUR

-
]
-
>
v

34 12
g g 1
g’ 8
K £ 08
2
g 8 05
iy fa)
04 04
-1 0.2 .
60 60
2023
2021 e ° 202 e o
1
20 2020 20 2020
2019 2019
Tenor 0 Reference dates Tenor 0 Reference dates
Figure 7: Term structure and Discount factors surface - EUR
Zero rates - GBP Discount factors - GBP
6 12

L
|
-

L

L

Zero rates (%)
N w - (4]
Y i
Discount factors
(=]
(=]
ri

2020

Tenor 0 Reference dates Tenor 0 Reference dates

2019 2019

Figure 8: Term structure and Discount factors surface - GBP
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Zero rates - JPY

Discount factors - JPY
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Figure 9: Term structure and Discount factors surface - JPY
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Figure 10: Term structure and Discount factors surfatéSD

The term structure for each eligible date is then modelled following parsiosotiiberia. The idea is to start from the simplest m
and use more complex models only if certain criteria on the goodness oftéibilitysof the results are not fulfilled.

This means that the first model that will be used is Nelson Siegel, then SvenssodetRezende and if none of the param
models works satisfactorily, then the Gaussian Process Regression will be implemented.

The first discriminating criterion is the goodness of fit, measured throgghdjusted R-square. The threshold is set to a val
0.95, and below such value the model is rejected in favour of monelen (and flexible) models.

pdel

atric

ue of

After checking the goodness of fit, the focus is on the stability of re3tiésselection for stability is conducted following two steps:

- Detection of unrealistically unstable results,

- Detection of outliers.

In the first step, the coefficients of the parametric models are analyzeglinggbeir mean value and using a 95% confidence level.
,] D PRGHOfV FRHIILFLHQW KDV DQ XSSHG ZAORZFHUL \E RHPGWRIPW K HK E RQHIE,G DG

then it is considered unrealistically unstable, and the model is discarded.

7KH VHFRQG VWHS RQ WKH RWKHU KDQGI| RKSWILHM DG A R/UHHF WRR DV V Laiiper SR ¢
(lower) bound that is higher than the mean value plus two times the standatibdethen the model is discarded. It is worth to

highlight that we have implemented a robust check on the starting guesses relatednbrtbarieast squares solver.

If statistical performances are not aligned with the previous criteria using thaffidgstm initial values, the algorithm automatically

produces two other sets of values for the solver.

If none of these attempts works, then the heuristic will take into consideration aonagpé&ex parametric model. The process of

model selection is further developed in the flow chart below (Figure 11).
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ZeroRates;
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Nelson Siegel, Svensson and
DeRezende fitting
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Figure 11: Heuristic for the model selection

The results of this selection are reported in the next Figures (12-16).
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Figure 12: Nelson-Siegel, Svensson and de Rezende coeffioiethts CHF Interest rates term structures
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Figure 13: Nelson-Siegel and Svensson coefficients for the Bgfedt rates term structures

The results for the de Rezende model for the EUR currency are quitéapefou every estimation made with this model, the
coefficients are deemed as unstable.
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Figure 14: Nelson-Siegel, Svensson and de Rezende coeffioiehts GBP Interest rates term structures

Figure 15: Nelson-Siegel coefficients for the JPY Interest rates term strsicture
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The JPY is another interesting case, as after the procedures described above, bdgitai\Nefson Siegel model is used, with the
GP regression used for the few points deemed as outliers.

Figure 16: Nelson-Siegel and Svensson coefficients for the U8i@dhrates term structures

As in the EUR case, for the USD currency, again, the results with the de Rezaeted@radoo unstable.

After the selection process, the reference dates for which the modelling tipemaghetric models did not give a satisfying resulf are
represented through the Gaussian Process regression.
Given that the yield curves that failed to be modelled with the parametric approaches canesgutifferent shapes, the kernel
choice is made automatically among a list of kernel functions, each one with peca@tetistics that can be useful for modelling
the different characteristics of the term structures. For a list of the kernel funsgensaragraph 3.
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After the kernel choice, the model has been run and a 10-foldwalidation procedure has been implemented in order to check the
performance of the model. There are no overfitting problems given tHdSBEeof the training and test sets almost match in all cases.
As an example of the procedure conducted, the (10-fold) MSE of the tentustrwith reference date 8th February 2019, modelled

through GP regression, has been plotted with respect to the iterations of thiripr¢Egure 17).

Figure 17: Coefficients for GBP Interest rates term structure

5. Main Results and Conclusions
The results computed on the parametric models are in line with evidence from otkerkesrexample, (Svensson, 1996) and|(de
Rezende, 2013) in their cited works found that the (Nelson Siegel, a@fiél is the most applied, as is the case here.

Besides, the role played by Machine Learning should be highlighted. The nafnibedels applied per currency and the overall
results are displayed in Figure 18.

Figure 18: Models used per currency

As shown, most of the term structures have been modelled through the Nelssra&itthe GP regression. The case of Japan is
quite curious, as almost the entirety of the term structures over the referendehpeg been modelled through Nelson Siegel. [This
may also be explained observing the smoothness of the surface of thateerdue to a greater stability in interest rates compared
to the other currencies. Another observation, deduced from Figure 18 sisiitarity between USD and GBP and between EUR and
CHF.
Overall, 29% of the models used are GP Regression models: it is a large figurea¥lie because the reference period consjders
sub periods of strong turbulence in financial markets in general, aadticutar related to monetary policies. This assessment seems
to be confirmed if we analyse both the graphs of the coefficients andrtheates surfaces in section 4: the period of the COVID-

19 outbreak and the recent surge in inflation have led to high voladifity it seems to have affected the capability of parametric
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models to effectively model the term structure. This can be seen in fhtes (- UHODWHG WR PRGHOVY |[FRF
gaps (i.e. the time periods without the confidence intervals) in the first méribe pandemic and in the very last part of the refergnce

period that coincided with high inflation and stricter monetary policies. As highligbhtaeeaobserving the graphs of coefficients

(12-16), again, the case of Japan looks quite striking.

$ OHVV 3 TXDOLWDWLYH UHVXOW FRQFHUQV WKS$VNRWQW K HI XNQHWPL K @/N\BISKT W & |
$XWRPDWLF 5SHOHYDQFH '"HWHUPLQDWLRQ NHUQHDO I ¥X@KW WRHQ\S D 3 &N 5o atatis UEL
Exponential kernel function proves to be the less used kernel function fkinithisf regression problem. These results are shown in

the bar chart in Figure 19.

Figure 19: Kernels used with respect to GP models

In order to increase the level of clarity and explainability of the GaussiansBroatput, the implementation of statistical meth
similar to those applied in (Giudici and Raffinetti, 2023) and in (Giudici, CenturelliTamchetta, 2024) should be considered

further research developments.
At the current state of this study, the gap between the prediction obtainetthédachine Learning method and the output comp

ods
for

uted

by a spline interpolation of the zero rates points has been used as a potentibfarahieaesponses. If this gap were higher than a

prefixed threshold, the anomaly would be reported to the analyst whbusaoontrol and intervene in the choice of the method
applied to efficiently solve the regression.

Another potential improvement to the model could be implemented combiningdiff@rnels by adding (and/or multiplying) th¢
together to model the term structure, starting with those kernels that appearethasttheomising: a linear combination of AR
kernels. The reason for this suggestion is to increase the fitting poterttia k#fgressive methodology as it would entail a hig
level of adaptability compared to the one obtained from the implementatiomngielernel. The better the fitting is, the better
estimation of the discount factors and of the implied forwards rates are.

to be
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D
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