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Abstract 

The objective of the present study is to implement the alternative stochastic binomial trees for the evaluation and estimation 

of the main sensitivity measures of convertible bonds, thus filling a gap in scientific literature. The paper proposes the 

implementation of the Haahtela, Jarrow-Rudd and Tian numerical schemes and explores the characteristics, convergence 

properties and reliability of these evaluation tools. A comprehensive case-study considering the German market, which is an 

extremely active market in the issuance and trading of these hybrid instruments, is also illustrated. 
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1) Introduction 

The valuation of many complex financial instruments, such as convertible bonds, typically requires numerical methods due to 

their option-like features. 

A convertible bond is a hybrid security that retains most characteristics of straight debt while also offering the upside potential 

associated with underlying common stock. A convertible bond is a corporate security giving the bondholder the right, but not 

the obligation, to convert the bond into another security, typically the ordinary shares of the issuing company, under specific 

conditions. Once converted into ordinary shares, they cannot revert into bonds. Due to their structure and their option feature, 

convertibles show characteristics of both debt and equity instruments, leading to their classification as hybrid instruments. A 

similar instrument is convertible preferred stock, which means preference shares that can be converted into ordinary shares 

based on specific terms. Convertibles play an important role in corporate finance and have benefited from advanced valuation 

models originally created for option markets. Their hybrid nature initially presented challenges in analysis and valuation, but 

modern techniques have largely solved these issues. As a result, issue volumes increased steadily through the 1990s, 

particularly during rising stock markets. Convertible bonds are fixed-coupon securities issued with the option to convert into 

equity, at the bondholder's discretion, under pre-determined terms. These bonds are usually subordinated, and only 

companies with strong credit ratings can issue them. The market perception of the issuer’s stock performance is also critical, 

since investors are purchasing the right to subscribe for shares at a future date, potentially at a premium over the market price. 

Consequently, the price of a convertible bond fluctuates following changes in the underlying stock price and in interest rates. 

Convertibles are typically medium to long-term instruments with maturities of 10 to 20 years, and their coupons are typically 

lower than those on non-convertible bonds from the same issuer. In addition to basic fixed-coupon convertibles, various other 

instruments are also available. They include zero-coupon convertibles, issued at a deep discount with a low probability of 

conversion, and discount convertibles. Some convertibles are callable by the issuer, allowing them to force conversion under 

certain conditions. They are called convertible calls and reduce the bondholder’s discretion, potentially leading to unfavourable 

terms. Conversely, puttable convertibles allow bondholders to redeem the bond or convert it at their pleasure, providing 

downside protection. Premium put convertibles can only be converted on a single date, while rolling put convertibles offer 

multiple conversion dates and are generally issued with a lower coupon. 

Another variant is the exchangeable security, a bond issued by one company that is convertible into the shares of another 

company in which the issuer holds a significant interest. Bonds with warrants are convertible bonds issued with an attached 

warrant that can be traded individually. Step-up convertibles and preference shares are newer innovations, offering a fixed 

coupon for the first few years before increasing the coupon until maturity or conversion. 

Convertible bonds have a long history in capital markets, with the first issuances by U.S. utility companies in the 19th century. 

In 1997, the global convertibles market was valued at over $360 billion, with the U.S. as the largest issuer, historically 

dominated by utility and transport companies. Unlike domestic and international securities, convertibles are primarily 

exchange-traded, offering more liquidity and transparency compared to OTC bonds. However, liquidity still depends on the 

number of market makers and the volume of the issue, making some convertibles less liquid than conventional bonds. 
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Contingent Convertible bonds (CoCos), also referred to as enhanced capital notes (ECNs) constitute another variant. While 

both instruments involve the conversion of debt into equity, they differ fundamentally in terms of trigger mechanisms, investor 

control, and intended function within the financial system. 

CoCos are designed primarily as regulatory capital instruments. They automatically convert into equity when a specific trigger 

is met, usually when the issuing bank’s capital ratio falls below a defined threshold. Unlike standard convertibles, CoCos do not 

offer conversion at the investor’s discretion. Instead, conversion is imposed under adverse conditions, often resulting in the 

receipt of equity at depressed valuations. The main function of CoCos is to enable financial institutions, particularly banks, to 

absorb losses and maintain solvency without external support. These instruments gained prominence following the 2007–2008 

financial crisis, when they were introduced as a mechanism to strengthen bank capital structures and reduce the need for 

taxpayer-funded bailouts (De Spiegeleer and Schoutens, 2014). 

From an investment perspective, standard convertibles offer a more favourable risk-return profile under normal market 

conditions, combining steady cash flows with upside equity participation. CoCos, on the other hand, carry a higher level of risk, 

as their conversion is typically triggered in times of financial distress. If the trigger condition is never met, CoCos may be 

redeemed at maturity in the same way as conventional bonds. The convertible bond market represents a significant and 

growing segment in the landscape of fixed-income financial instruments. In recent years, the global convertible bond market 

has seen a substantial expansion. According to Bloomberg® data and other market sources, the total amount of convertible 

bond issuances reached $150 billion in 2021, an increase from previous years, driven by favourable market conditions and 

growing demand for hybrid instruments. S&P Global reports that 2021 was a particularly dynamic year for new issuance, fuelled 

by market volatility that incentivised companies to seek flexible financing arrangements. Among the most active sectors are 

technology and healthcare, where companies often need capital to support innovation and long-term growth. On the investor 

side, convertible bonds are valued for their ability to mitigate risk. With the bond component, investors enjoy downside 

protection while maintaining a fixed return, while the conversion component offers upside potential if the share price rises. 

Morningstar points out that funds specialising in convertible bonds have been able to outperform traditional fixed-income 

funds in good market times, thanks to the ability to participate in stock market rises. 

Geographically, the convertible bond market is dominated by the US, Europe and Asia, with the US accounting for the largest 

share of issues (Calamos Investments, 2021). In Europe, issuances are mainly driven by the banking and technology sectors, 

where CoCo (Contingent Convertible Bonds) instruments play a key role in banks' regulatory capital. In Asia, countries such as 

Japan and Hong Kong have developed well-regulated and growing convertible bond markets, with strong interest from both 

local issuers and global investors. 

 

2) Fair value determination of a Convertible Bond 

Convertible bonds embed characteristics of both debt and equity, making their valuation challenging. The presence of multiple 

embedded option and early-exercise features often makes closed-form solutions unsuitable, especially within realistic market 

conditions. 
In early works by Ingersoll (1977), such solutions rely on assumptions of market completeness and continuous-time trading, 

which severely limit their applicability. Further critiques by Nyborg (1996) highlighted the inability of analytical models to 

incorporate market frictions, non-linear payoff structures, and conditions such as early calls or forced conversions. 
This complexity led to the development of numerical approaches, particularly within two dominant theoretical frameworks: 

the structural and the reduced-form approaches. 
The structural approach, developed by Ingersoll (1977) and Brennan and Schwartz (1980), models the bond as a contingent 

claim on the firm’s value, assuming the default occurs when the firm’s asset value falls below a given value. This method 

assumes a simplified capital structure, continuous monitoring and perfect observability of firm value, greatly limiting its 

practical relevance. Furthermore, estimating volatility on a firm-level asset base is commonly unfeasible, especially when other 

senior claims coexist (Brennan and Schwartz, 1980). 
The reduced-form approach, theorized by McConnell and Schwartz (1986), assumes the convertible bond as a contingent claim 

on the underlying stock price, where credit risk is modeled exogenously. Early implementations, such as Ho and Pfeffer (1996), 

used a risk-adjusted constant credit spread to reflect default risk, but this assumption has been criticized for failing to capture 

time-varying credit conditions. 
A key contribution in this space was the Tsiveriotis and Fernandes (1998) model, which decomposes a convertible bond into a 

fixed-income part (subject to credit risk) and an equity-linked part (considered default-free), each discounted with different 

rates. This model became widely adopted due to its tractability and alignment with market practice. 
Refinements by Ayache, Forsyth and Vetzal (2003) and Gushchin and Curien (2008) introduced endogenous modeling of 

default probability and recovery rates. The former in particular embedded credit risk within both the equity and debt 

components and incorporated partial recovery, producing more accurate pricing compared to the Tsiveriotis and Fernandes 
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(1998) and Brennan and Schwartz (1980) models in empirical comparisons. Gushchin and Curien (2008) also demonstrated 

that modeling credit spreads as stochastic processes, rather than constant, improved calibration and reduced errors. 
Given the multidimensional risk profile of convertible bonds, numerical methods are nowadays the dominant paradigm. 
Among these, lattice-based methods (or stochastic tree models) play a central role due to their intuitive structure and ability 

to capture discrete events and decision points such as coupon payments, callability, or conversion. These methods discretize 

time and the evolution of relevant state variables across a grid, where the bond value is recursively computed from maturity 

to the present, reflecting the expected payoff under each possible path. 

Hung and Wang (2002) developed a binomial tree model incorporating stochastic interest rates via the Ho and Lee (1986) 

model and default risk through the Jarrow and Turnbull (1995) framework, assuming the stock price jumps to zero upon 

default. They assigned probabilities to stock price, interest rate, and default transitions, concluding that such integration 

improved pricing accuracy. Chambers and Lu (2007) refined this approach by introducing a non-zero correlation between stock 

returns and interest rates, an often-overlooked dependency, using the same interest rate and credit models. Their results 

underscored the importance of jointly modeling correlated risks in convertible bond valuation. 
Das and Sundaram (2007) incorporated stochastic volatility using the Constant Elasticity of Variance (CEV) model, along with 

stochastic interest rates (modeled à la Heath, Jarrow, Morton, 1990) and default risk. Their framework allowed for correlation 

between equity and term structure dynamics and showed that the sensitivity of bond value to credit risk is magnified under 

high volatility conditions. 
Ho and Pfeffer (1996) used a binomial model with deterministic volatility and interest rates but introduced credit risk through 

an option-adjusted spread. Their study on US callable convertible bonds highlighted systematic underpricing in the market. 
Trinomial trees have also been adopted to improve convergence and computational accuracy. Gushchin and Curien (2008) 

used a trinomial tree within the Tsiveriotis-Fernandes framework and found their approach capable of handling a wider range 

of instruments and market conditions. 
Rotaru (2006) applied another trinomial method and modeled callable convertibles using deterministic volatilities and credit 

spreads and observed consistent underpricing across different market segments. 
Overall, tree models have proven to be among the most effective methods in handling the discrete features and early-exercise 

optionalities typical of convertible bonds. Their flexibility allows for the modeling of complex structures. While simulation 

methods, such as Monte Carlo approaches, are often preferred for higher-dimensional problems and deeply path-dependent 

features, tree-based methods remain a robust and intuitive alternative, that balances accuracy and computational feasibility. 
Despite these studies, significant gaps remain. 

Most tree models rely on simplifying assumptions such as deterministic volatility, constant credit spreads, or uncorrelated risk 

factors, which reduce realism. Relatively few contributions have succeeded in jointly integrating stochastic equity, interest 

rates, and credit spreads within a single computationally tractable lattice framework. The consistent empirical evidence of 

underpricing across various markets suggests that the valuation of convertible bonds remains an open research area. These 

observations point toward the need for hybrid or adaptive numerical schemes that can reflect complex market imperfections 

while maintaining robustness and interpretability. 
The pricing of convertible bonds has traditionally relied on established numerical methods such as finite difference models, 

finite element methods, binomial or trinomial trees and Monte Carlo methods. However, the adoption of alternative tree 

models remains relatively limited, indicating a potential gap in the research. Recent studies started to explore these alternative 

models. 

Hu, Li and Liu (2022) introduced a Jarrow-Rudd model that incorporates asymmetry and kurtosis in the returns of the 

underlying asset, using an asymmetric random walk process. 

This approach allows for more accurate calibration to implied volatility surfaces and includes hedging costs, bringing the model 

closer to real market scenarios. The foundation for this line of modeling can be traced back to Jarrow and Rudd (1986), who 

proposed a simplified binomial tree based on equal probabilities for upward and downward price movements. Although 

computationally efficient, their approach lacked the risk-neutral valuation framework, which limited its practical application in 

derivative pricing, Jarrow and Rudd (1986). Despite its applicability, the use of the JR model is not yet widespread in this 

context. Similarly, Tian proposed a flexible binomial tree that matches not only the mean and variance but also the skewness 

of the underlying asset return distribution. This enhancement improves convergence and accuracy in option pricing, 

particularly for instruments sensitive to higher-order moments (Tian, 1993a and Tian, 1993b). Haahtela (2006) extended this 

line of development by introducing a trinomial tree framework designed to incorporate informed trading and asymmetric 

information, offering a structure more aligned with realistic market behaviour. 
Milanov and Kounchev (2012) developed a binomial tree model for pricing convertible bonds that accounts for credit risk, 

demonstrating convergence to the model of Ayache, Forsyth and Vetzal (2003). This model integrates both reduced and 

synthetic approaches for modeling default risk, offering an alternative to traditional models. 
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Despite these developments, the adoption of alternative tree models in convertible bond pricing remains marginal. Most 

studies continue to focus on traditional lattice models, which have limitations in incorporating more complex market features. 
There is a significant opportunity to further explore and develop alternative tree models in the context of convertible bonds. 

These models could offer greater flexibility and accuracy in valuation, especially in complex market scenarios or when dealing 

with non-standard optional features. 
In the next section, we discuss the most widely used valuation methodology for convertible bonds, namely the Cox, Ross and 

Rubinstein stochastic binomial tree (CRR Tree). The theoretical foundation for this approach was initially proposed by Cox and 

Ross (1976), who explored the valuation of options under alternative stochastic processes. In the fourth section, we then 

review the three most popular alternative binomial trees: Haahtela, Jarrow-Rudd and Tian. We first explain the theoretical 

principles and peculiarities of each approach, then implement them in pricing European and American options.  

European options allow the holder to exercise the option only at expiration, while American options offer greater flexibility by 

allowing exercise at any time up to expiration. This flexibility makes American options more complex to price, as it requires 

taking advantage of early exercise opportunities.This step is considered to be preparatory to the application of these 

techniques to the quantitative analysis of convertible bonds because it provides evidence of the correct implementation of the 

method. Once we verify that the alternative stochastic binomial trees converge correctly, we can implement them for the 

valuation of a convertible bond. In the fifth section, we then show how to adapt the traditional CRR numerical scheme to 

alternative techniques: after illustrating the step-by-step procedure and highlighting implementation differences, we provide 

proof of correct implementation through a convergence analysis. In order to conduct a complete quantitative analysis, we also 

numerically estimate the sensitivity of the models to the main risk parameters, i.e., the change in the underlying (Delta and 

Gamma) and volatility (Vega). In this analysis, the Jarrow-Rudd tree has shown a different sensitivity than the other approaches 

on Vega. 

In the sixth section, we provide empirical evidence for our findings by offering numerous market cases suitable for confirming 

the analysis performed. Robustness in the estimation of the main quantitative measures that can be associated with a 

convertible bond for all the different alternative stochastic binomial trees discussed in the study is thus proven. 

 

3) The most widespread pricing methodology for pricing a Convertible Bond: the CRR Tree 

We provide a short explanation of the working principle of the Cox, Ross and Rubinstein Tree in Appendix A, together with a 

proof of the derivation of the three main parameters (the up factor: 𝑢, the down factor 𝑑 and the probability ∏  ) that rule the 

projections of the underlying. We assume the up and down parameters to be constant throughout the paper. 

The mathematical notation used for the description is the standard notation adopted by (Haug, 2007) and briefly described in 

the same Appendix. Consequently, this paragraph focuses exclusively on the implementation of this technique in the 

convertible bond pricing. 

As we have already explained, a convertible bond can be viewed as a combination of a traditional bond and a stock option. 

When the stock price is significantly lower than the conversion price, the convertible bond behaves like a simple bond. 

Conversely, when the share price is much higher than the conversion price, it behaves more like a stock. This dynamics should 

influence the discounting of cash flows. 

In a risk-neutral setting, this does not mean arbitrarily changing the discount rate; rather, it reflects the fact that the 

appropriate discount rate depends on the nature of the payoff being replicated. For a deeply out-of-the-money convertible, 

future cash flows should be discounted at a rate that includes the credit spread 𝑘 above the bond's Treasury rate. 

If the convertible is deeply in-the-money, the conversion is almost certain, and the cash flows should be discounted at the risk-

free rate. Bardhan et al. (1994) incorporated these considerations by applying a discount rate based on a variable conversion 

probability. 

The CRR Tree model begins with a standard binomial stock price tree. 

The convertible bond price is then calculated by working back from the final nodes of the stock price tree, ensuring that the 

value of the convertible at each end node equals the greater of the conversion value or the face value plus the final coupon. 

To roll backward through the tree, backward induction is used. 

 

If it is optimal to convert the bond, the value is set equal to the conversion value at that node, or else the convertible bond 

value 𝑃𝑛,𝑖  is set equal to: 

𝑃𝑛,𝑖 = max[𝑚𝑆,∏𝑃𝑛+1,𝑖+1𝑒
−𝑟𝑛+1,𝑖+1Δ𝑡 + (1 − ∏)𝑃𝑛+1,𝑖𝑒

−𝑟𝑛+1,𝑖Δ𝑡]   (1) 

where m represents the conversion ratio. Certain convertible bonds include an initial lockout period during which conversion 

is not permitted. At these nodes, the convertible bond value can be simplified to: 

 

𝑃𝑛,𝑖 = ∏𝑃𝑛+1,𝑖+1𝑒
−𝑟𝑛+1,𝑖+1Δ𝑡 + (1 − ∏)𝑃𝑛+1,𝑖𝑒

−𝑟𝑛+1,𝑖Δ𝑡    (2) 
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Rather than applying a constant discount rate 𝑟, the discount rate 𝑟𝑛,𝑖  is adjusted to vary with the conversion probability 𝑞𝑛,𝑖  

at each node. The conversion probabilities 𝑞𝑛,𝑖, where n is the time step and i is the number of up moves (state), are determined 

by working backward from the end of the stock price tree. 

If conversion is optimal at a given end node, the conversion probability is set to 1; otherwise, it is set to 0. For earlier time 

steps, the conversion probability is also set to 1 if it is optimal to convert at that node; otherwise, it remains at: 

 
𝑞𝑛,𝑖 = ∏𝑞𝑛+1,𝑖+1 + (1 −∏)𝑞𝑛+1,𝑖    (3) 

The credit-adjusted discount rate is set equal to a conversion probability weighted mixture of the risk-free rate and the credit-

adjusted rate. This gives a discount rate for up moves equal to: 

 

𝑟𝑛,𝑖 = 𝑞𝑛,𝑖𝑟 + (1 − 𝑞𝑛,𝑖)(𝑟 + 𝑘)   (4) 

 

The discount rate is therefore set to the constant risk-free rate 𝑟 when the conversion probability is 1, and to 𝑟 + 𝑘 (the risk-

free rate plus the credit spread) when the conversion probability is 0. For conversion probabilities between 0 and 1, the 

discount rate transitions smoothly between the risk-free and credit-adjusted rates. 

 
Example 

In this subsection, we analyse a traditional pricing of a Convertible bond, Haug (2007): we generated the following trees using 

the data provided in the book and implemented it in a more efficient numerical environment (Python).  

Let us consider a convertible corporate bond with five years to maturity. The continuously compounding yield on a five-year 

treasury bond is 7%, the credit spread on the corporate bond is 3% above treasury, the face value is 100, the annual coupon 

is 6, the conversion ratio is 1, the current stock price is 75, and the volatility of the stock is 20%. 

Consequently, the inputs of the model are: 𝑆 = 75, 𝑇 = 5, 𝑟 = 𝑏 = 0.07, 𝑘 = 0.03, 𝑚 = 1, and 𝜎 = 0.20.  

To price the convertible bond, we need to build a standard binomial stock price tree. With the number of time steps 𝑛 = 5, 

we obtain Δ𝑡 = 1 and up and down factors are: 

 

𝑢 = 𝑒𝜎√Δ𝑡 = 𝑒0.2√1 = 1.2214           𝑑 =
1

𝑢
= 0.8187 

The probability of an increase in price is thus given by: 
 

∏ = 
𝑒𝑏Δ𝑡 − 𝑑

𝑢 − 𝑑
=
𝑒0.07×1 − 0.8187

1.2214 − 0.8187
= 0.6302 

and we obtain the binomial stock price tree in Figure 1. 
 

 

Figure 1: 5-steps Stock Price Binomial Tree: numeric example 
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The next step is to find the convertible bond values and the conversion probabilities at each node in the tree. Firstly, let us look 

at the calculation of several nodes. 

At the end node with stock price 203.87, it is better to convert the bond into one stock and receive the stock price 203.87 

rather than get the notional plus the coupon (100 + 6). The probability of conversion at this node, 𝑞5,5, is 100%, which we write 

as 1.00 in the conversion probability tree. 

At the end node, with a stock price of 91.61, it is better not to convert the bond and receive the face value plus the coupon of 

106. The probability of conversion is 𝑞5,3 = 0. For the node at year four (n = 4) with stock price 111.89, the convertible bond 

value of 121.77 is found using equation (1): 

 

𝑃4,4 = max[1 × 111.89,0.6302 × 136.66𝑒
−𝑟𝑛+1,𝑖+1×1 + (1 − 0.6302)106.00𝑒−𝑟𝑛+1,𝑖+1×1] 

 

The credit-adjusted discount rates are found using equation (4): 

 

𝑟𝑛+1,𝑖+1 = 1 × 0.07 + (1 − 1)(0.07 + 0.03) = 0.07 

 

𝑟𝑛+1,𝑖 = 0 × 0.07 + (1 − 0)(0.07 + 0.03) = 0.1 

 

The conversion probability of 0.63 at this node is given by equation (3): 

 

𝑞4,4 = 0.6302 × 1 + (1 − 0.6302) × 0 = 0.6302 

 

The same procedure can be used to find any convertible bond value and conversion probability.  

 

The previous section outlined the basic principles of how to incorporate a convertible bond model. In practice, there are many 

other aspects to consider. Some convertible bonds allow the issuer to force investors to convert the bond if the share price 

reaches a certain predetermined level (barrier).  

To include a barrier in the convertible binomial model, the number of time steps must be chosen so that the barrier falls exactly 

on the nodes. 

The conversion probability is then set to 1 if the share price is greater than or equal to the barrier. The issuer of the convertible 

bond often has the right to call the bond, while the investor has the right to sell the bond. Figures 2 and 3 in this paragraph 

illustrate the 5-steps stock price and convertible bond value trees, respectively.  

 

 

 

Figure 2: 5-Steps Convertible Bond Price binomial Tree: numeric example 
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Figure 3: 5-Steps Conversion Probability Tree: numeric example 

 
Convergence of Binomial Trees for CRR model  

Having introduced the valuation of European and American options using the binomial tree method, we now examine the 

accuracy of this technique. 

The convergence analysis of the binomial tree is fundamental to understand its effectiveness in option pricing. Our analysis 

examines how the binomial tree approximates the actual option price as the number of time steps increases.  

When analysing convergence, we need to consider the error of a numerical scheme. 

If 𝑉𝑒𝑥𝑎𝑐𝑡  represents the correct option value and 𝑉𝑛 is the value from a binomial tree with 𝑛 steps, the error can be expressed 

as: 

 

𝐸𝑟𝑟𝑜𝑟𝑛 = 𝑉𝑒𝑥𝑎𝑐𝑡 − 𝑉𝑛   (5) 

 

To formally define convergence, there exists a constant 𝑘 such that, for all time steps 𝑛: 

 

𝐸𝑟𝑟𝑜𝑟𝑛 = 𝑂 (
1

𝑛𝑐
)   (6) 

 

where 𝑐 is the order of convergence. As long as 𝑐 > 0, 𝑉𝑛 will converge to 𝑉𝑒𝑥𝑎𝑐𝑡 . Mathematical proof that shows the 

convergence of the binomial lattice to the true option price is described in (Giribone and Ventura, 2011).  

For European options, we can empirically examine this convergence since we have an analytic expression for 𝑉𝑒𝑥𝑎𝑐𝑡  (the Black-

Scholes price). 

We know that the binomial distribution will eventually converge to the lognormal distribution, which underlies the Black-

Scholes model. 

Empirical evidence shows that, for all basic binomial models (e.g., CRR, RB) 𝑐 = 1, meaning 𝑉𝑛 converges to the Black-Scholes 

price at a rate of  
1

𝑛
. 

In general, to halve the error, the number of time steps needs to be doubled (Leisen and Reimer, 1996). 

In our case, as shown in Figure 4, the convergence chart represents the price behaviour of a convertible bond using a binomial 

tree approach with the Cox-Ross-Rubinstein model. 

The x-axis denotes the number of steps (𝑁) and the y-axis represents the computed price of the convertible bond. 

We can see there is a rapid initial convergence from step 3 to around 15 steps. At a low number of steps, the bond price shows 

significant changes, rising sharply to around 130. 

After reaching around 20 steps, the bond price begins to stabilise near 130, indicating convergence. 

Beyond this point, minor oscillations persist, fluctuating slightly above and below the convergence value. The plot in Figure 4 

suggests that the model reaches practical convergence after about 20 steps. 
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Figure 4: Convergence of convertible bond price for the CRR binomial tree model 

 

4) Alternative binomial trees  

We now conduct a convergence analysis of the CRR, Tian, Jarrow-Rudd, and Haahtela models. Our goal is to evaluate the 

stability and accuracy of each model when pricing convertible bonds by systematically increasing the number of time intervals. 

As described in the Introduction, all models are calibrated to ensure consistency with the statistical properties of the underlying 

asset, such as first and second moments. 

 

Tian Binomial Tree Model 

The Tian model improves the classic binomial lattice for option pricing by modifying parameters to achieve greater accuracy in 

approximating the continuous-time stochastic process of an underlying asset. Specifically, the Tian approach adjusts the up 

and down factors in the lattice so that the lattice corresponds to the first three moments of the continuous-time distribution: 

mean, variance and skewness. This additional moment constraint is a key distinction from traditional models such as the Cox-

Ross-Rubinstein model, which typically only corresponds to the first two moments (mean and variance). 

The stock price in a binomial lattice can either increase by a factor 𝑢 or decrease by a factor 𝑑 in each time period Δ𝑡, where 

Δ𝑡 =
𝑇

𝑁
  denotes the discrete time step (also referred to as a bump). 𝑇 is the time to maturity, with 𝑁 discrete steps. Tian 

defines the up and down factors using the growth factor 𝑀 = 𝑒𝑟Δ𝑡 which corresponds to the drift under a risk-neutral measure, 

and the volatility adjustment 𝑣 = 𝑒𝜎
2Δ𝑡. Then, the model proposed by Tian matches the first three moments of the log-normal 

distribution followed by the underlying: 

 

𝑢 =
1

2
𝑒𝑏Δ𝑡𝑣 (𝑣 + 1 + √𝑣2 + 2𝑣 − 3 )   (7) 

𝑑 =
1

2
𝑒𝑏Δ𝑡𝑣 (𝑣 + 1 − √𝑣2 + 2𝑣 − 3 ) , 𝑣 = 𝑒𝜎

2Δ𝑡    (8) 

∏ =
𝑒𝑏Δ𝑡 − 𝑑

𝑢 − 𝑑
   (9) 

With these values, the binomial model distribution converges to the lognormal distribution of continuous-time stock prices 

more accurately by accounting for skewness (third moment). This skewness correction helps the Tian model better 

approximate the behaviour of asset prices, especially in fewer steps compared to traditional binomial models. 

Below, we show the values obtained relative to the auxiliary variables 𝑢, 𝑑 and ∏ for the Tian model with respect to the 

example shown in section 3. 

 

𝑀𝑜𝑑𝑒𝑙: 𝑇𝑖𝑎𝑛 ⟶  𝑢 =  1.3657, 𝑑 =  0.9124, ∏ =  0.3532 
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The stock price tree generated by the Tian model reflects a wider, more skewed distribution of stock prices over time, 

accounting for realistic price volatility and potential skewness (see Figure 5). Each node shows a potential stock price at each 

time interval, with branches indicating upward or downward movements. By incorporating skewness into the Tian model, we 

observe a wider range of stock prices compared to simpler models, particularly at the terminal nodes, which capture more 

extreme highs and lows.  

 

 

Figure 5: 5-Steps Stock Price Binomial Tree – Tian Model 

 
Jarrow-Rudd Tree Model 

The Jarrow-Rudd model is an extension of the traditional binomial approach, and it introduces modifications to the tree model 

structure that can more accurately adapt to market conditions. Like other binomial option pricing models, Jarrow-Rudd 

binomial trees are characterized by the sizes of up and down moves and their associated probabilities. The main feature of the 

Jarrow-Rudd model is that up and down moves are chosen to have a probability of  
1

2
. 

Beyond these specific formulas, the rest of the model aligns with the Cox-Ross-Rubinstein and other binomial option pricing 

models. 

The up and down multipliers 𝑢 and 𝑑 are used to construct the underlying price tree, starting at the current underlying price 

𝑆 and extending to the option expiration. At each node in the tree, the price can either move up 𝑆 ∙ 𝑢 or down 𝑆 ∙ 𝑑 at either 

node in the next step. 

The underlying prices at expiration (the last nodes in the tree) are then used to determine the option payoffs, forming the last 

layer of the option price tree. From there, the option price tree is calculated backwards, working toward the first node, which 

gives the current option price.  

 

𝑢 = 𝑒
(𝑏−

𝜎2

2
Δ𝑡+𝜎√Δ𝑡)

   (10) 

𝑑 = 𝑒
(𝑏−

𝜎2

2
Δ𝑡−𝜎√Δ𝑡)

   (11) 

∏ =
1

2
   (12) 

Where 𝑏 = 𝑟 − 𝑞 is the so-called “cost-of-carry” (see Appendix A). 

The equal probability assumption simplifies calculations and aligns with certain market conditions where no bias exists in price 

movements.  

Below, we show the values obtained relative to the auxiliary variables 𝑢, 𝑑 and 𝑝 for the Jarrow-Rudd model:  

 

  
𝑀𝑜𝑑𝑒𝑙: 𝐽𝑎𝑟𝑟𝑜𝑤 − 𝑅𝑢𝑑𝑑 ⟶  𝑢 =  1.2840, 𝑑 = 0.8607, ∏ =  0.5000 

 



 

RISK MANAGEMENT MAGAZINE – Volume 20, Issue 3                                                                                                           - 13 - 

 

 

Figure 6: 5-Steps Stock Price Binomial Tree – Jarrow Rudd 

 

In Figure 6 representing the stock price tree, we observe a symmetrical progression of prices as we proceed through the time 

steps. This symmetry stems from the structure of the Jarrow-Rudd model, which adjusts the risk-neutral drift by maintaining a 

normal-type distribution around the expected stock price. 

 

Haahtela Tree Model 

 

The Haahtela model addresses option pricing where the underlying asset distribution diverges from the traditional lognormal 

shape by introducing flexibility for distributions that can incorporate both positive and negative values. This model is 

particularly useful when the underlying asset value exhibits dynamics that are not well modeled by Geometric Brownian 

Motion. 

In traditional Geometric Brownian Motion based binomial trees, the up and down factors for each step are calculated using 

the volatility parameter to approximate the future asset price distribution as lognormal. 

However, the Haahtela model introduces a shifted diffusion process different than the one of the Geometric Brownian Motion 

binomial trees, which allows the underlying value to follow a path between normal and lognormal distributions. 

This is achieved by introducing a “shift” or “displacement” parameter, which allows the model to capture the skewness and 

better handle negative values, when necessary. 

The Haahtela model adapts the up and down factors and the probability ∏ as follows: 

 

𝑢 = 𝑒𝑏Δ𝑡 (1 + √𝑒𝜎
2Δ𝑡 − 1)   (13) 

𝑑 = 𝑒𝑏Δ𝑡 (1 − √𝑒𝜎
2Δ𝑡 − 1)   (14) 

∏ =
𝑒(𝑟−𝑞)Δ𝑡 − 𝑑

𝑢 − 𝑑
   (15) 

These values are adjusted to account for the shifted distribution by setting the increase factor 𝑢 and the decrease factor 𝑑 

based on both the traditional volatility and the shift parameters. 

The probability of an upward move ∏, is modified to align with the risk-neutral valuation principle while accommodating the 

shifted process. 

This formulation maintains no-arbitrage conditions within the model while reflecting the altered dynamics of the displaced 

process. Below, we show the values obtained relative to the auxiliary variables 𝑢, 𝑑 and ∏ for the Haahtela model: 

 

 
𝑀𝑜𝑑𝑒𝑙: 𝐻𝑎𝑎ℎ𝑡𝑒𝑙𝑎 ⟶  𝑢 =  1.2892, 𝑑 =  0.8558, ∏ =  0.5000 
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Figure 7: 5-Steps Stock Price Binomial Tree – Haahtela Model 

 

Figure 7 illustrates the evolution of share prices using the specific parameters of the Haahtela model, which tends to allow a 

wider range of potential outcomes for each node. This tree structure suggests a higher level of implied volatility, as shown by 

the wide gap between the highest and the lowest final price. 

Indeed, the initial stock price starts at 75.00. Moving up the tree, there are rapid increases, reaching a high of 267.06 at the 

highest final node, indicating strong upside potential according to the assumptions of the Haahtela model. In contrast, the 

lowest end node ends at 34.44, showing significant downside potential. 

This large gap between the highest and the lowest possible price indicates that the parameters of the Haahtela model could 

incorporate a higher volatility factor, allowing for more pronounced stock price fluctuations over time. 

Such a model might be suitable for activities characterised by greater uncertainty or speculative behaviour, where price 

fluctuations are expected to be more extreme. 

The structure reflects the model flexibility in capturing upside and downside risks, which could be useful in the valuation of 

volatility-sensitive options or derivatives. 

 
Convergence Analysis of the Alternative Binomial Trees 

This section aims to compare an alternative pricing model with the CRR model in order to validate its accuracy and reliability 

for the pricing of both European and American call and put options. 

The CRR model has been extensively tested and refined for both types of options, making it a suitable benchmark for assessing 

the convergence and accuracy of other pricing models. 

In this paragraph we analyse the performance of our model by comparing the prices of European and American call and put 

options with those generated by the CRR model. 

Using the same parameters for both models, we examine the degree of convergence between the models, as the number of 

steps in the binomial tree increases. 

We perform the computation using the following parameters: 𝑆₀ =  100, 𝐾 =  95, 𝑇 =  0.5 years, 𝑟 =  𝑏 =  0.01, and 𝜎 =

 0.20. We use a European call option because it has a simple structure and can only be exercised at maturity, making it easier 

to compare with the theoretical Black-Scholes price. 

For the American option, we chose a put since its value is more affected by early exercise, especially when the stock price 

decreases. 

This combination of a European call and an American put allows for a comprehensive convergence analysis. The European call 

serves to validate the numerical model’s accuracy and reliability under simpler conditions, while the American put tests the 

model's ability to handle the additional complexity of early exercise. 

This benchmarking and convergence analysis will provide insights into the robustness and potential limitations of our model 

with respect to an established standard.  

First, we calculate the theoretical price of a European call and put option using the Black-Scholes. The BS framework provides 

a closed form solution based on inputs like the stock price, strike price, time to maturity, risk-free rate, and volatility. These 

results serve as a benchmark for assessing the accuracy of the numerical methods. 

Then we move on to numerical techniques, specifically binomial tree models, to approximate the option prices. 
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To study the performance of these models, we conducted a convergence analysis. We applied the numerical methods to both 

European and American options. 

For European options, we calculated the value through backward induction, starting from the terminal payoff at maturity and 

moving step by step to the present. 

For American options, the code incorporates the possibility of early exercise so we checked, at each step, whether exercising 

the option was more favourable than holding it. This involves comparing the intrinsic value of the option with its continuation 

value. 

We recorded and plotted the results from each model, showing that the estimated prices converge toward the theoretical 

Black-Scholes price. This provides valuable insights into the speed and accuracy of each model (see Figure 8).  

 

 

Figure 8: Convergence of European Option Prices for Different Binomial Tree Models 

 
The plot illustrates the convergence of European option prices calculated with different binomial tree models as the number 

of steps (𝑁 Steps) in the tree increases. 

Each plot represents a different model: CRR, Jarrow-Rudd, Tian and Haahtela. The y-axis shows the option price, while the x-

axis shows the number of steps in the binomial tree. 

Initially, there is a significant fluctuation in option prices with a low number of steps, which is particularly noticeable in models 

such as Tian. 

As the number of steps increases, these fluctuations reduce, and the models begin to converge towards a stable price. Around 

150-200 steps, all models begin to align closely, indicating that they are approaching the theoretical value predicted by the 

Black-Scholes formula.  

This pattern of convergence suggests that a higher number of steps leads to greater accuracy in binomial tree models. 

However, the speed of convergence and initial stability vary depending on the model. 

For example, the Tian model exhibits greater initial fluctuations, while the CRR shows relatively more uniform convergence. 

The plot shows that all models eventually stabilise around the same price, validating the numerical methods against the 

analytical benchmark, as the tree size increases. 

Additionally, we analysed the impact of the number of steps on the precision of American options, which are more complex 

due to the early exercise feature. 

The visualization offers a clear comparison between the models. For instance, the CRR model is expected to provide consistent 

results as the number of steps increases, but alternative methods like Tian or Haahtela may show faster convergence or better 

accuracy under certain conditions. These observations help highlight the trade-offs between computational complexity and 

precision. 

Figure 9 shows the convergence of American option prices calculated using different binomial tree models, as the number of 

steps (𝑁 Step) in the tree increases. 
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American option prices are slightly higher than the corresponding European prices due to the possibility of early exercise 

inherent in American options. 

The possibility of early exercise introduces additional complexity, making the convergence process slightly more variable 

compared to European options. 

Overall, the plot shows that although the models behave differently at a lower number of steps, they all converge to a similar 

value as the number of steps increases. 

This validates the robustness of these binomial models in pricing American options, while highlighting the patterns of 

convergence and the impact of early exercise characteristics. 

Consistent results at higher numbers of steps reinforce the reliability of numerical methods for accurate pricing. 
 

 

Figure 9: Convergence of American Option Prices for Different Binomial Tree Models 

 

5) Convertible bond valuation and sensitivity analysis 

The previous paragraph explored the versatility of alternative binomial tree models in convertible bond pricing, highlighting 

how variants such as the Tian, Jarrow-Rudd and Haahtela models address specific market dynamics and offer potential 

enhancements over the classic Cox-Ross-Rubinstein scheme. 

These models improve pricing accuracy by capturing distinctions in the behaviour of the underlying asset, including skewness, 

volatility structure and other real-world characteristics that a standard binomial tree might overlook. 

We conducted an in-depth analysis of alternative binomial trees, comparing them with traditional European and American 

options and verifying their proper convergence to the expected theoretical value. This analysis served as an important 

validation of the alternative approaches, demonstrating that models such as Jarrow-Rudd, Tian and Haahtela not only preserve 

theoretical consistency, but they are also capable of converging to reliable results within the context of fair value evaluation. 

By analysing the structural differences of these models and conducting convergence analysis, we highlighted their potential 

for improving price accuracy, especially for complex instruments such as convertible bonds. 

These improvements underline the flexibility and adaptability of binomial trees for modelling hybrid securities. Building on this 

foundation, in this section we move from theoretical considerations to practical implementation, focusing on the application 

of the CRR model and its alternatives to the valuation of convertible bonds. 

Then, based on this theoretical validation, the present section focuses on the practical application of these alternative 

approaches in a more complex context: the valuation of convertible bonds. By leveraging the base structure of the code 

implemented for the traditional CRR model, we integrated the parameters 𝑢, 𝑑, and 𝑝 specific to the alternative trees. 

The objective is to address the same valuation problem previously solved with CRR but using the anticipated variants to explore 

how these models influence results in the context of hybrid instruments, such as convertible bonds. 

Furthermore, in this section we introduce a comparative sensitivity analysis, assessing how the choice of the binomial model 

influences pricing outcomes and conversion probabilities. This analysis sheds light on the practical implications of model 
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choice, demonstrating the impact of factors such as volatility, interest rates and share price fluctuations on the valuation 

process. 

Presenting the results of different binomial schemes, the section highlights the strengths and limitations of each approach, 

guiding practitioners in choosing the most appropriate model based on specific market conditions and bond characteristics.  

 

Pricing Assessment with 5-steps 

We now delve into the practical application of the Jarrow-Rudd, Tian and Haahtela models by analysing the Convertible Bond 

Price Binomial Tree and the Conversion Probability Binomial Tree. These visual tools not only depict the pricing structure but 

also illustrate the evolving decision-making process of bondholders at each node, highlighting the differences introduced by 

the alternative models. 

The Convertible Bond Price Binomial Tree represents the recursive valuation process where the convertible bond value is 

determined at each node. At the terminal nodes, the bond value is derived by comparing the payoff of immediate conversion 

with the bond face value and accrued coupon payments. 

Moving backward through the tree, intermediate nodes incorporate the discounted expected value of future payoffs, weighted 

by the risk-neutral probabilities. The results reveal how the unique assumptions of each alternative model influence the 

valuation process. The Jarrow-Rudd model, grounded in a symmetric framework, produces a straightforward, smooth 

progression of values across the tree. This regularity makes it an effective and computationally efficient alternative in stable 

market conditions. The Tian model, by accounting for skewness in the underlying stock price distribution, yields a wider range 

of values, particularly evident in extreme upward or downward scenarios. This skewness enables it to better reflect real-world 

asset behaviour, especially in volatile markets. 

The Haahtela model, with its flexibility to move beyond the lognormal assumption, demonstrates the broadest range of values. 

This adaptability allows it to capture irregular market dynamics, making it particularly suited to environments with atypical 

price behaviours. 

The bond price was evaluated, as shown in the trees below, using 5-steps. 

The speed of convergence is a crucial metric in numerical methods, especially for financial modeling. It refers to how quickly a 

model approaches the theoretical fair value as the resolution of the tree increases. Faster convergence means that fewer steps 

are required to achieve a given level of accuracy. 

In the context of convertible bond pricing, where valuation must account for both equity-like and bond-like features, a model 

with a high speed of convergence ensures that complex features such as conversion probabilities and early exercise decisions 

can be captured accurately without excessive computational overhead. This analysis provided an opportunity to examine the 

initial price structures generated by these models under minimal tree resolution, emphasizing their practical differences. 

Our results showed that, even with only 5 steps, the alternative models delivered fair value estimates that were consistent 

with the CRR benchmark (see Figures 10, 11 and 12). Despite their distinct methodologies - such as Tian's skewness adjustment, 

Jarrow-Rudd’s symmetric structure and Haahtela’s flexible distribution - all models demonstrated reasonable accuracy, 

indicating their robustness. Our analysis also revealed how these structural differences influence the distribution of bond prices 

at the node level, providing insights into their potential strengths under varying market conditions. 

 

 

Figure 10a: 5-Steps Convertible Bond Price Binomial Tree – Jarrow Rudd Model 
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Figure 10b: 5-Steps Conversion Probability Binomial Tree – Jarrow Rudd Model 

 

 

Figure 11a: 5-Steps Convertible Bond Price Binomial Tree – Tian Model 

 
 

 

Figure 11b: 5-Steps Conversion Probability Binomial Tree – Tian Model 
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Figure 12a: 5-Steps Convertible Bond Price Binomial Tree – Haahtela Model 

 
 

 

Figure 12b: 5-Steps Conversion Probability Binomial Tree – Haahtela Model 

 
Convertible Bond Price Convergence of Alternative Binomial Trees  

In this part, we expanded the analysis by increasing the number of steps in the binomial trees to 120, allowing for a 

comprehensive study of convergence behaviour.  

In Figure 13, we provide a representation of the convergence of alternative binomial models in the valuation of convertible 

bonds. Examining the lines corresponding to the various approaches, it is evident that all models - Jarrow-Rudd, Tian and 

Haahtela - converge toward the same fair value limit, aligning with the results of the traditional CRR model. This observation 

is significant because it demonstrates that alternative trees, despite their structural differences, maintain theoretical 

consistency in the calculation of convertible bond values. 

The convergence behaviour among the models suggests that these alternative approaches are as robust as the CRR model, 

with negligible differences in terms of convergence speed. Specifically, all models achieve stability in their values after a certain 

number of steps in the tree construction. The initial oscillations, visible mainly in the early steps of the graph, quickly diminish 

as the values converge toward a stable and reliable price. 

This behaviour indicates that, in this specific case, the differences in the formulations of 𝑢, 𝑑, and 𝑝 parameters do not 

significantly affect the model's ability to deliver accurate valuations.  

One key implication of our analysis is that alternative models are not only theoretically valid but also practical and useful in 

real-world applications. The comparability in convergence speed between alternative models and the CRR highlights that they 

can be implemented without compromising computational efficiency. Therefore, models such as Jarrow-Rudd, Tian or 
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Haahtela can be confidently used in practical applications, especially in scenarios where their unique characteristics provide 

additional advantages. 

 

 

Figure 13: Convergence of Convertible Bond Price of the Alternative Binomial Trees 

Moreover, it is interesting to observe that, in the specific case under consideration, the convergence of the models follows a 

similar pattern even in finer details (see Figure 13). For example, although the Tian model introduces the management of 

skewness in price distributions and the Haahtela model offers flexibility beyond lognormal assumptions, both exhibit a 

convergence behaviour that is almost indistinguishable from that of the other models. This result reinforces the idea that the 

choice between models can be guided not so much by their ability to converge - which is guaranteed - but rather by the specific 

market requirements or input conditions. 

Another significant aspect concerns the interpretation of the plot’s stable and aligned behaviour. It demonstrates that 

regardless of the model chosen, consistent results can be achieved in determining the fair value of the convertible bond. This 

is particularly important for complex instruments like convertible bonds, which require models capable of handling both equity-

related characteristics (conversion option) and bond-related features (coupons and nominal value) simultaneously. 

In short, the graph provides solid confirmation of the robustness of alternative approaches, highlighting their ability to 

converge to the expected theoretical value with a convergence speed comparable to that of the CRR model. This observation 

makes the alternative models not only a valid choice for convertible bond valuation but also flexible tools that can be employed 

to address a variety of market scenarios. 

In the specific case we analysed, the behaviour of the models confirms that, despite introducing theoretical and structural 

differences, the alternative trees maintain a level of reliability and stability comparable to the CRR, making them practical and 

well-suited for financial decision-making processes. 

 

Sensitivity Analysis 

In this section, we analyse the sensitivities, known as "Greeks", which are key risk measures in option pricing, that quantify 

how the value of an option responds to changes in various market factors. These sensitivities are usually calculated as partial 

derivatives of the Black-Scholes-Merton (BSM) formula. These partial derivatives show the option price change to a small 

change in the parameters of the formula. 

The Greeks include Delta, Gamma, Vega, Theta, and Rho, allowing us to break down complex price movements into measurable 

components. This analysis is essential for effective hedging strategies, risk management, and for understanding the behaviour 

of options under various market conditions.  

In numerical methods, like the Cox-Ross-Rubinstein binomial tree model, Greeks are approximated using finite-difference 

techniques. 

Unlike analytical approaches, these numerical methods involve discretization, where the underlying asset price path is divided 

into a finite number of steps. The lack of a closed-form solution means Greeks must be estimated by bumping input parameters 

and observing the resulting changes in the bond price. 
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Delta (𝚫) is calculated by changing the underlying asset price incrementally: 
 

Δ ≈
𝑓(𝑆 + 𝛥𝑆) − 𝑓(𝑆 − 𝛥𝑆)

2𝛥𝑆
   (16) 

Gamma (𝚪) requires two levels of bumping to assess the change in Delta: 
 

Γ ≈
𝑓(𝑆 + 𝛥𝑆) − 2𝑓(𝑆) + 𝑓(𝑆 − 𝛥𝑆)

𝛥𝑆2
   (17) 

Vega (𝝂) approximates sensitivity to volatility: 
 

𝜗 ≈
𝑓(𝜎 + 𝛥𝜎) − 𝑓(𝜎 − 𝛥𝜎)

2𝛥𝜎
   (18) 

In addition to the computation of the Greeks, we conducted a further validation to confirm that the computation of the CRR 

has been conducted correctly. 

The inclusion of Taylor approximations further validates the reliability of the binomial tree models, offering a quick and efficient 

method to estimate.  

The Taylor series expansion provides a framework to approximate the change in the convertible bond price as a function of 

multiple variables, such as the underlying asset price, volatility and time. Using a first-order Taylor approximation, the 

convertible bond price change is expressed as a linear combination of partial derivatives (Greeks), while the inclusion of second-

order terms, such as Gamma, accounts for curvature effects.  

Then, given that the Greeks of financial derivatives are computed, we performed an approximate valuation of the instrument.  

By utilizing the first-order derivatives of the option price with respect to the relevant risk parameters, we applied the general 

Taylor formula in this context. 

The larger the shock applied to the reference parameter, the less accurate is the approximation. 

Comparing these approximations with the exact prices calculated for each model highlights the alignment between the 

numerical sensitivities and the bond price behaviour (see Table 1). 

 

Greeks CRR Tian Jarrow-Rudd Haahtela 

Delta 0.4076 0.4176 0.429 0.4291 

Gamma 0.001 -0.001 -0.001 0.001 

Vega 69.7186 43.1465 62.4383 62.5352 

Table 1: Results of the Greek sensitivities 

For the CRR model, the Taylor approximations demonstrate good agreement with exact prices across all Greeks, with minor 

deviations observed for Δ and 𝜗, likely reflecting slight non-linearities in the stock price and volatility sensitivities.  

The Taylor estimate of 131.765 for Δ closely approximates the exact price of 131.967. 

The Tian model reveals similar trends but shows a slightly different sensitivity structure. For Δ, the Taylor approximation 

131.981 again tracks the exact price 132.188 well, though some deviations emerge for 𝜗, reflecting model-specific nuances in 

interest rate and volatility sensitivities. 

In the Jarrow-Rudd model, the Taylor approximation for Δ of 132.204 again aligns well with the exact price 132.416, but the 𝜗 

sensitivity shows reduced deviations compared to the CRR model. 

Finally, the Haahtela model performs similarly to Jarrow-Rudd, with a high degree of alignment between Taylor approximations 

and exact prices. For instance, Δ and Γ produce approximations within a tight range of the exact values, while 𝜗 again shows 

minor discrepancies due to higher-order effects. These comparisons illustrate that the Taylor approximation acts as a 

diagnostic checkpoint, confirming the validity of Greek calculations and the numerical implementation of each binomial tree 

model. Moreover, the observed differences between the approximations and the exact prices highlight the unique sensitivities 

of each model, offering deeper insights into their structural characteristics and applicability to convertible bond pricing. This 

further validates the convergence properties explored earlier, as Taylor approximations consistently approach exact prices as 

the binomial tree models stabilize with increasing time steps. By integrating analytical and numerical methods, the Taylor 

approach reinforces confidence in the robustness and accuracy of the alternative models studied. 

 

6) Market Case Study 

This section presents an experiment in pricing Convertible bonds having different shares as the underlying to the conversion 

option. We considered the forty stocks in the German DAX index because currently the most active market for these hybrid 
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instruments is Germany (source: Bloomberg®, module: Fixed Income Search). The reference date for the valuations is 

December 31, 2024. 

The EOY (End-Of-Year) closing prices together with the description of the underlyings are shown in Table B.1 in the Appendix. 

These constitute the spot prices, 𝑆, of the model. 

As for the estimation of dividend yields, we employed the term structures of continuous dividend yield 𝑞(𝑡) implied by the 

call-put parity or by forward contracts quotations. If no implied values are contributed, due to the absence of actively traded 

derivatives written on an underlying, the value considered remains constant for all maturities and is set equal to the ratio of 

the cash dividend paid, divided by the spot, as is traditionally defined in corporate finance. Table B.2 in Appendix shows these 

estimates for eight different maturities (6M, 1Y, 2Y, 3Y, 4Y, 5Y, 7Y, and 10Y) for all forty German stocks. 

The implied volatilities are lognormal, 𝜎(𝐾, 𝑡), and they are calculated from three different strike prices (moneyness: 80%, 

100% and 120%) and eight different maturities (6M, 1Y, 2Y, 3Y, 4Y, 5Y, 7Y and 10Y). 

A two-dimensional linear interpolation (strike price - time) is conducted in the pricing routines in order to choose the most 

suitable volatility for the valuation. 

If there are no vanilla European options, the volatility surface is flat, characterized by a single value of volatility estimated 

historically by the close-to-close method. Table B.3 shows the three sections of moneyness for all German stocks considered 

in the experiment. 

The risk-free term structure we used for the analysis has one day as tenor. The ESTER curve is shown in Figure B.1 in the 

Appendix. Under the assumption that the issuer of the convertible bond is the same as the stock, to take into account the 

correct creditworthiness, we rely on CDS premiums traded in the market. If this information is not available due to the absence 

of active quotes, a single value computed from the Z-spread closest to the maximum maturity considered in the experiment, 

i.e., 10 years, is used instead of the entire CDS term structure. The CDS curves are shown in Table B.1. 

To estimate the impact on price and the main measures of option sensitivity, namely Delta Δ, Gamma Γ and Vega ϑ, we 

assumed different convertible bonds for the different alternative binomial trees discussed. These scenarios are designed to 

test whether the specific results reported in Table 1 are confirmed with different market scenarios. 

We now describe the financial characteristics common to all hybrid instruments considered in the different scenarios: the 

coupon rate is 3% paid semi-annually, the face amount of the bond is 100, the discretization interval of the numerical scheme 

is one day, Δ𝑡 = 1/360. The type of exercise considered for the option is American, i.e., the right can be exercised at any 

instant in time. 

Here are the parameters which define the scenarios for all 40 stocks: 

- A structured product maturity from six months to 10 years in six-month steps. 

- A moneyness of the option ranging from 50% to 150% with a 10% step. 

All interpolations of market term structures are made by dynamically considering the analyzed maturities/strikes. 

These simulations are conducted for all four binomial approaches considered (CRR, Jarrow-Rudd, Tian and Haahtela) and for 

the quantitative measures of price, Delta, Gamma and Vega. 

Thus, we produced 140,800 scenarios, stored in tensors of 5 dimensions each: 40 stocks ×20 maturities ×11 strike prices×4 

trees×4 quantitative measures. 

In terms of price, the values of the alternative binomial trees produced extremely aligned results; in fact, the maximum 

valuation gap for all scenarios is no more than one cent. Regarding the calculated CRR Greeks, Jarrow-Rudd and Haahtela 

produced aligned values, while the Tian approach again showed different sensitivity with respect to volatility (ϑ) especially in 

experiments where the convertible bond had a longer maturity and an ATM strike. The first- and second-order sensitivities 

with respect to spot (Δ and Γ) showed alignment with those estimated with the other numerical approaches. The Matlab code 

written for these experiments is available upon request. 

 

7) Conclusions 

This study set out to explore and evaluate the applicability of alternative stochastic binomial tree models in the valuation and 

risk analysis of convertible bonds, a complex class of hybrid securities that combine features of both equity and debt 

instruments. While the Cox-Ross-Rubinstein binomial tree remains the most widely adopted method in practice and literature 

for this purpose, we identified a gap in research concerning the implementation and effectiveness of alternative binomial 

models in this context. 

To address this, we systematically examined three well-established binomial models (Haahtela, Jarrow-Rudd and Tian) and 

compared them against the traditional CRR approach. We began by analyzing the theoretical foundations and structural 

differences of each model, particularly their assumptions regarding drift, volatility, and node recombination. These differences 

can have meaningful implications for pricing accuracy and computational behavior, especially when applied to the valuation 

of instruments with embedded optionality such as convertible bonds. 



 

RISK MANAGEMENT MAGAZINE – Volume 20, Issue 3                                                                                                           - 23 - 

 

As a preparatory step, we implemented each model in the pricing of standard European and American options. This served 

both as a validation of the correct numerical implementation and as a benchmark for convergence behavior. All alternative 

models demonstrated satisfactory convergence to theoretical option values, thereby confirming their numerical soundness 

and suitability for more advanced applications. 

We then extended the analysis to convertible bonds, adapting the CRR-based lattice framework to each alternative method. 

This involved step-by-step reconstruction of the pricing trees. Sensitivity analyses were conducted to measure the 

responsiveness of each model to changes in key risk parameters: Delta, Gamma and Vega. While Delta and Gamma sensitivities 

remained broadly consistent across models, the Jarrow-Rudd tree exhibited a noticeably different Vega profile, suggesting that 

its underlying assumptions about return distributions may influence how volatility risk is captured. 

Finally, we validated the real-world applicability of these models through a series of empirical tests using market data. These 

case studies confirmed that the alternative binomial trees not only provide robust estimates of convertible bond values but 

also yield consistent risk metrics across varying market conditions. This reinforces the view that, when correctly implemented, 

these models can serve as reliable tools in both academic research and practical financial engineering. 

In addition to serving as a comparative study, this research contributes a practical framework for implementing, testing, and 

validating alternative lattice methods in the pricing of convertible bonds. The structured approach provides a replicable path 

for practitioners and researchers aiming to extend valuation models beyond conventional techniques. 

Looking forward, a natural continuation of this research involves extending the analysis to trinomial stochastic trees, which 

offer greater flexibility and can better capture skewness, kurtosis, and complex early-exercise features in convertible bond 

contracts. Adapting both traditional and alternative trinomial approaches - such as the Boyle and Tian trinomial models - using 

the same rigorous methodology outlined in this study could provide further insight into the comparative strengths of different 

lattice-based techniques in modeling hybrid financial instruments. 

Ultimately, this work enhances the quantitative toolkit available for convertible bond valuation and risk assessment, offering 

more nuanced and potentially more accurate modeling alternatives that can adapt to various market scenarios and investor 

requirements. 
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Appendix A – Cox Ross Rubinstein Tree for option pricing 

 

The Cox-Ross-Rubinstein (CRR) binomial model provides a discrete-time approximation of the dynamics of asset prices and 

serves as a foundational tool for derivative pricing. A crucial aspect of the model construction lies in the derivation of its 

parameters: the up and down factors (u and d) and the risk-neutral probability (p). 

These parameters must be chosen to ensure no-arbitrage conditions and to allow convergence of the binomial model to the 

continuous-time Black-Scholes model as the number of time steps increases (see Figure A.1). This section presents a formal 

derivation of the CRR parameters, grounded in the principles of risk-neutral valuation and probabilistic convergence. 

 

 

Figure A.1: A graphical representation of CRR parameters 

The Black-Scholes analytical formulas (BS closed formulas) cannot provide accurate valuations for all types of options traded 

in financial markets. They are unable to fairly value options with non-standard features, such as those that allow early exercise 

(Bermuda/American options) or have complex payoffs (exotic options). In such cases, numerical methods must be used to 

value the derivative. 

The literature offers numerous mathematical techniques that align with the principles of the Black-Scholes framework. We 

discuss and implement one of the stochastic binomial trees which is most used by quantitative analysts: the CRR model. 

To align with the stochastic dynamics assumed by the Black-Scholes framework, Cox, Ross, and Rubinstein proposed selecting 

the parameters u and d such that, for each time interval Δ𝑡 the projected future asset values match the theoretical mean and 

variance of the continuous model (Cox, Ross and Rubinstein, 1979). Assuming a risk-neutral environment, the expected rate 

of return of the stock is equal to the risk-free interest rate 𝑟. Therefore, the expected stock price at the end of interval Δ𝑡 is 

𝑆 ∙ 𝑒𝑟Δ𝑡 which is the stock price at the beginning of the interval. This leads to match the expected value of the asset in the 

binomial model to the one implied by the BSM model. 

  
First moment matching 𝔼(𝑆): 
 

𝑆 ∙ 𝑒𝑟Δ𝑡 = Π 𝑢𝑆 + (1 − Π)𝑑𝑆   (A.1) 
Dividing both sides by 𝑆: 

𝑒𝑟Δ𝑡 = Π𝑢 + 𝑑 − Π𝑑 
 

Π(𝑢 − 𝑑) = 𝑒𝑟Δ𝑡 − 𝑑 ➞ Π =
𝑒𝑟Δ𝑡−𝑑

𝑢−𝑑
    (A.2) 

 
The stochastic process assumed by the GBS framework (i.e. a Geometric Brownian motion) implies that the variance (𝑉𝐴𝑅) of 

its rate of change in a short interval of length Δ𝑡 is 𝜎2Δ𝑡. 

Since the variance of a random variable 𝑆 is defined as 𝐸(𝑆)2 − 𝐸(𝑆)2, where 𝐸(⋅) represents the expected value, we can 

derive the second equation that connects the second moment of the stochastic process to the dynamics of the binomial tree. 

 
Second moment matching: 𝑉𝐴𝑅(𝑆) = 𝔼(𝑆2) − 𝔼(𝑆)2   (A.3) 
 

Π 𝑢2 + (1 − Π)𝑑2 − [Π 𝑢 + (1 − Π)𝑑]2 = 𝜎2Δt   (A.4) 
 

𝔼(𝑆2)                             𝔼(𝑆)2                       
True under BSM framework, where: 
 

𝜎2Δt = Π 𝑢2 + (1 − Π)𝑑2 − Π2𝑢2 − 2Π(1 − Π)𝑢𝑑 − (1 − Π)2𝑑2 
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𝜎2𝛥𝑡 =  𝑢2(Π − Π2) + [(1 − Π) − (1 − Π)2]𝑑2 − 2Π(1 − Π)𝑢𝑑  
𝜎2𝛥𝑡 = 𝑢2Π(1 − Π) + (1 − Π)[1 − (1 − Π)]𝑑2 − 2Π(1 − Π)𝑢𝑑  
𝜎2𝛥𝑡 = Π(1 − Π)[𝑢2 − 2𝑢𝑑 + 𝑑2] = Π(1 − Π)(u − d)2   (A.5)   

Substituting Π from eq. (A.2): 

Π(1 − Π) = Π − Π2 = 
𝑒𝑟Δ𝑡 − 𝑑

𝑢 − 𝑑 
− 
𝑒2𝑟Δ𝑡 − 𝑑 + 2𝑑 ∙ 𝑒𝑟Δ𝑡 − 𝑑

(𝑢 − 𝑑)2
                                  

=
𝑒𝑟Δ𝑡𝑢 − 𝑢𝑑 − 𝑒𝑟Δ𝑡𝑑 + 𝑑2 − 𝑒2𝑟Δ𝑡 + 2𝑑 ∙ 𝑒𝑟Δ𝑡 − 𝑑2

(𝑢 − 𝑑)2
           

=
𝑒𝑟Δ𝑡(𝑢 − 𝑑 + 2𝑑) − 𝑢𝑑 − 𝑒2𝑟Δ𝑡

(𝑢 − 𝑑)2
                                                    

=
𝑒𝑟Δ𝑡(𝑢 + 𝑑) − 𝑢𝑑 − 𝑒2𝑟Δ𝑡

(𝑢 − 𝑑)2
   (A. 6)                                                     

 
Then, solving for ∏  from the first moment equation and substituting this value into the second moment equation, we obtain: 
 

𝜎2𝛥𝑡 =
𝑒𝑟Δ𝑡(𝑢 + 𝑑) − 𝑢𝑑 − 𝑒2𝑟Δ𝑡

(𝑢 − 𝑑)2
(𝑢 − 𝑑)2 

𝜎2𝛥𝑡 = 𝑒𝑟Δ𝑡(𝑢 + 𝑑) − 𝑢𝑑 − 𝑒2𝑟Δ𝑡   (A.7) 
 

Recalling that Cox, Ross and Rubinstein assumed that 𝑢 =
1

𝑑
, we obtain a 3 × 3 system which allows to express the parameters 

Π, 𝑢, 𝑑 in terms of 𝑟, 𝜎, Δ𝑡: 

 

{
 
 

 
 𝛱 =

𝑒𝑟Δ𝑡 − 𝑑

𝑢 − 𝑑 
                                               ➞   𝛼   

𝜎2𝛥𝑡 = 𝑒𝑟Δ𝑡(𝑢 + 𝑑) − 𝑢𝑑 − 𝑒2𝑟Δ𝑡         ➞   𝛽   

𝑢 =
1

𝑑
                                                             ➞   𝛾  

(A. 8) 

 
𝛾  ➞  β 

 

𝑒𝑟Δ𝑡 (𝑢 +
1

𝑢
) − 𝑢

1

𝑢
− 𝑒2𝑟Δ𝑡 = 𝜎2𝛥𝑡 

𝑢 +
1

𝑢
=
𝜎2𝛥𝑡 + 1 + 𝑒2𝑟Δ𝑡

𝑒𝑟Δ𝑡
  

𝑢 +
1

𝑢
= 𝑒−𝑟Δ𝑡[𝜎2𝛥𝑡 + 1 + 𝑒2𝑟Δ𝑡] 

𝑢 +
1

𝑢
= 𝑒−𝑟Δ𝑡𝜎2𝛥𝑡 + 𝑒−𝑟Δ𝑡 + 𝑒𝑟Δ𝑡 (A. 9) 

 
Under the hypothesis that Δ𝑡 is very small: 
  

𝑒−𝑟Δ𝑡 ≈ (1 − 𝑟Δ𝑡), 𝑒+𝑟Δ𝑡 ≈ (1 + 𝑟Δ𝑡), 𝑟𝜎2Δ𝑡2 → 0 (A.10) 
 
Thus, the quadratic equation becomes: 

𝑢 +
1

𝑢
≈ (1 − 𝑟Δ𝑡)𝜎2Δ𝑡 + 1 − 𝑟Δ𝑡 + 1 + 𝑟Δ𝑡 =    

= 𝜎2Δ𝑡 − 𝑟𝜎2Δ𝑡2 + 2 = 𝜎2Δ𝑡 + 2 

𝑢 +
1

𝑢
= 𝜎2Δ𝑡 + 2  ➞  𝑢2 + 1 = 𝜎2𝑢Δ𝑡 + 2𝑢.     

𝑢2 − (𝜎2Δ𝑡 + 2)𝑢 + 1 = 0   (A. 11) 
 
Solving for 𝑢: 
 

𝑢 =
𝜎2Δ𝑡 + 2 ± √(𝜎2Δ𝑡 + 2)2 − 4 

2
=
𝜎2Δ𝑡 + 2 ± √𝜎4Δ𝑡2 + 4𝜎2Δ𝑡 + 4 − 4

2
                            

=
𝜎2Δ𝑡 + 2 ± √𝜎4Δ𝑡2 + 4𝜎2Δ𝑡

2
   =

𝜎2Δt

2
+ 1 ± 𝜎√Δ𝑡   (A. 12) 

 

For a very small Δ𝑡, 𝜎2Δ𝑡2 tends to 0. Since √Δ𝑡 is far larger than Δ𝑡 for small Δ𝑡, and 𝜎2 is relatively smaller than 𝜎, we can 

ignore the first term 
𝜎2Δt

2
. 
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𝑢 ≈ 1 ± 𝜎√Δ𝑡   (A.13) 

𝑢 ≈ exp(𝜎√Δ𝑡)  because 𝑢 > 1 ⟹ 𝑢 ≠ exp(−𝜎√𝛥𝑡)  

 
Hence, the below set of parameters enables the construction of a binomial stochastic tree that fully aligns with the Black-

Scholes pricing framework. Thus, if the number of time intervals approaches infinity 𝑁 → ∞, the model theoretically converges 

to the closed-form valuation formula for European vanilla options. 

 

{

𝑒𝑟Δ𝑡 = ∏𝑢 + (1 − ∏  )𝑑

𝑒𝑟Δ𝑡(𝑢 + 𝑑) − 𝑢𝑑 − 𝑒2𝑟Δ𝑡 = 𝜎2Δ𝑡  

 𝑢 =
1

𝑑

 →        {

∏ =
𝑒𝑟Δ𝑡−𝑑

𝑢−𝑑

𝑢 = 𝑒𝜎√Δ𝑡   

 𝑑 = 𝑒−𝜎√Δ𝑡 

           (A.14) 

 
The numerical formulas of the binomial approach can be extended to more underlyings by introducing the parameter 𝑏 called 

cost-of-carry (Haug, 2007). 

Based on the value of the parameter 𝑏, we reach a pricing framework applicable to a wide range of underlying assets for which 

call or put options can be written. The adjustment needed is in the definition of the risk-neutral probability Π, equation (A.2). 

 

If 𝑏 =  𝑟 the definition is suitable to be used for the pricing of options written on shares that pay no dividend. 

If 𝑏 =  𝑟 −  𝑞 the definition is suitable to be used for the pricing of options written on shares/indexes with a continuous 

dividend yield 𝑞. 

If 𝑏 =  0 the definition is suitable to be used for the pricing of options on futures. 

If 𝑏 =  𝑟 − 𝑟𝐹𝑂𝑅  the definition is suitable to be used for the pricing of currency options. 

Binomial Option Pricing: The Cox-Ross-Rubinstein 

Building on the derivation of equation (A.14) in the previous section, which defines the up and down factors and risk-neutral 

probabilities aligning with the Geometric Brownian Motion framework, this section extends these principles to practical 

applications. It explores the implementation of the CRR binomial tree model to price European and American options, 

emphasizing its adaptability for different payoff structures. This transition from theoretical parameter derivation to numerical 

application demonstrates that the CRR model bridges discrete and continuous approaches to option valuation, providing a 

robust framework for pricing various financial derivatives. 

The Binomial Option Pricing is a numerical method for pricing options and derivative securities. Unlike analytical solutions, this 

numerical method is versatile and can handle a broader range of options for which no closed-form solutions exist.  

The binomial method is the most widely used numerical approach for pricing American options on stocks, futures, and 

currencies. Originally developed by Cox, Ross, and Rubinstein (1979) and Rendleman and Bartter (1979), this method 

approximates Geometric Brownian Motion with a recombining binomial tree. 

When the number of time steps is large, the binomial tree converges to the continuous Black-Scholes-Merton model for 

European options. The binomial model is especially suited for pricing American options, where no closed-form solution exists, 

and for many exotic options. 

In a binomial tree, the asset price can increase by a factor 𝑢 with probability 𝑝 or decrease by a factor 𝑑 with probability 

(1 − ∏) over each time step Δ𝑡. The number of time steps is 𝑛. Each node is represented by (𝑗, 𝑖) where 𝑗 is the number of 

time steps to a node in the tree, and 𝑖 represents the number of upward moves. 

The first node (𝑗 = 0, 𝑖 = 0) of the tree progresses with each step. If the asset price goes up at the second node, it will be 

assigned (𝑗 = 1, 𝑖 = 1). If the asset price goes down at the first-time step, we have (𝑗 = 1, 𝑖 = 0), as shown in Figure A.2. 

The number of paths leading to a node (𝑗, 𝑖) is 
𝑗!

𝑖!(𝑗−𝑖)!
, and the equivalent probability of reaching node (𝑗, 𝑖) is 

𝑗!

𝑖!(𝑗−𝑖)!
∏𝑖(1 − ∏)𝑗−𝑖  (Giribone, 2024). 

 
To price European call or put options, we only need the end nodes at time 𝑛, such that (with 𝑋 denoting the strike price): 
 

𝑐 = 𝑒−𝑟𝑇∑(
𝑛!

𝑖! (𝑛 − 𝑖)!
)

𝑛

𝑖=0

∏𝑖(1 − ∏)𝑛−𝑖max[𝑆𝑢𝑖𝑑𝑛−𝑖 − 𝑋, 0]   (A. 15) 

𝑝 = 𝑒−𝑟𝑇∑(
𝑛!

𝑖! (𝑛 − 𝑖)!
)

𝑛

𝑖=0

∏𝑖(1 − ∏)𝑛−𝑖max[𝑋 − 𝑆𝑢𝑖𝑑𝑛−𝑖 , 0]   (A. 16) 
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Figure A.2: Standard indexing for a 5-Step Binomial Tree 

 
Many nodes will be out-of-the-money, so instead of starting the count from the lowest node (𝑖 = 0), we can improve the 

algorithm efficiency by beginning at 𝑎 (for a call option), which is the smallest non-negative integer greater than 
ln(

𝑋

𝑆𝑑𝑛
)

ln(
𝑢

𝑑
)

. This 

gives: 

𝑐 = 𝑒−𝑟𝑇∑(
𝑛!

𝑖! (𝑛 − 𝑖)!
)

𝑛

𝑖=𝑎

∏𝑖(1 − ∏)𝑛−𝑖(𝑆𝑢𝑖𝑑𝑛−𝑖 − 𝑋)   (A. 17) 

𝑝 = 𝑒−𝑟𝑇∑(
𝑛!

𝑖! (𝑛 − 𝑖)!
)

𝑛

𝑖=𝑎

∏𝑖(1 − ∏)𝑛−𝑖(𝑋 − 𝑆𝑢𝑖𝑑𝑛−𝑖)   (A. 18) 

 
Generalized European Binomial 

The European binomial model in its more general form is: 

 

𝑐 = 𝑒−𝑟𝑇∑(
𝑛!

𝑖! (𝑛 − 𝑖)!
)

𝑛

𝑖=0

∏𝑖(1 − ∏)𝑛−𝑖𝑔[𝑆(𝑇), 𝑋]   (A. 19) 

𝑝 = 𝑒−𝑟𝑇∑(
𝑛!

𝑖! (𝑛 − 𝑖)!
)

𝑛

𝑖=0

∏𝑖(1 − ∏)𝑛−𝑖𝑔[𝑆(𝑇), 𝑋]   (A. 20) 

where 𝑆(𝑇) = 𝑆𝑢𝑖𝑑𝑛−𝑖  and 𝑔[𝑆(𝑇), 𝑋] represents any specified payoff function at maturity. 

This highlights the versatility of the simple binomial model, as it can price any European option on a single asset with a payoff 

that is not path dependent. 

For example, to determine the value of a power option with a payoff of max[𝑆2 − 𝑋, 0] at maturity, we simply replace 

𝑔[𝑆(𝑇), 𝑋] with max[(𝑆𝑢𝑖𝑑𝑛−𝑖)2 − 𝑋, 0]. The variable z equals 1 if the contract is a call, and -1 if it is a put. 

 
Cox-Ross-Rubinstein American Binomial Tree 

Here, we examine how to apply the Cox-Ross-Rubinstein binomial tree to value American-style options. At each node, the asset 

price is given by:  

 

𝑆𝑢𝑖𝑑𝑛−𝑖 ,                   𝑤𝑖𝑡ℎ 𝑖 = 0, 1, … , 𝑗   (A.21) 

where 𝑢 and 𝑑 are the up and down jump factors for each time interval Δ𝑡 =
𝑇

𝑛
, with 𝑛 being the number of time steps, as 

previously defined (see Figure A.3). The probability of the stock price increasing by factor 𝑢 is given by equation (A.17). 

Since the probabilities must add up to one, the probability of the stock price decreasing by 𝑑 is (1 − ∏). 
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The up and down factors and probabilities are selected to match the first two moments of the stock price distribution, ensuring 

that as Δ𝑡 approaches zero, the probability distribution generated by the binomial tree converges to Geometric Brownian 

motion. A key benefit of this numerical pricing technique consists in its ability to compute the fair value of options with the 

possibility of early exercise, such as American and Bermudan options. This flexibility, however, introduces additional complexity 

compared to standard European-style valuation. Rather than simply calculating the payoff at maturity and propagating the 

value backwards using a conventional algorithm, it becomes necessary to evaluate, at each time step, whether exercising the 

option immediately yields a higher value than holding it. Consequently, at every node in the binomial tree, the option value is 

determined as the maximum between its immediate exercise payoff and its continuation value: 

 

𝐶𝑡 = max[𝐶𝑑𝑒𝑎𝑑 ; 𝐶𝑎𝑙𝑖𝑣𝑒] = max [𝑆𝑡 − 𝐾;
𝐶𝑢⋅Π+𝐶𝑑⋅(1−Π)

1+𝑅
]    (A.22) 

 

𝑃𝑡 = max[𝑃𝑑𝑒𝑎𝑑; 𝑃𝑎𝑙𝑖𝑣𝑒] = max [𝐾 − 𝑆𝑡;
𝑃𝑢⋅Π+𝑃𝑑⋅(1−Π)

1+𝑅
]    (A.23) 

 

 

Figure A.3: 5-Step Binomial Tree with stock price movements 
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Appendix B – Market Inputs 
 
This appendix reports the market data used for the numerical experiment of pricing and sensitivity estimation with the different 
alternative binomial models. Market values are downloaded from Bloomberg® at closing market values on December 31, 2024. 

 

 

Table B.1 Close prices for the Equity shares in EUR and CDS premiums for the Issuers in bps. Reference Date: EOY 2024 

 

 
 

 
 

Ticker Name Price 0.5 1 2 3 4 5 7 10

ENR GY Equity Siemens Energy AG 50.38 9.4 13.7 19.4 25.2 29.6 31 44 64.5

SY1 GY Equity Symrise AG 102.65 36 36 36 36 36 36 36 36

PAH3 GY Equity Porsche Automobil Holding SE 36.35 48.5 53.1 68.5 83 110.6 146.35 182.1 218.9

MTX GY Equity MTU Aero Engines AG 322 49 49 49 49 49 49 49 49

RHM GY Equity Rheinmetall AG 614.6 50.4 58.2 75.6 96.3 117.1 137.1 166.2 185.3

DTG GY Equity Daimler Truck Holding AG 36.85 97 97 97 97 97 97 97 97

SHL GY Equity Siemens Healthineers AG 51.2 9.4 13.7 19.4 25.2 29.6 31 44 64.5

ZAL GY Equity Zalando SE 32.39 71 71 71 71 71 71 71 71

QIA GY Equity QIAGEN NV 43.045 44.65 44.65 44.65 44.65 44.65 44.65 44.65 44.65

SRT3 GY Equity Sartorius AG 215.2 47 47 47 47 47 47 47 47

BNR GY Equity Brenntag SE 57.88 63 63 63 63 63 63 63 63

AIR GY Equity Airbus SE 154.46 20 20 27 34 41 48 68.5 92.5

ALV GY Equity Allianz SE 295.9 9.05 11.5 14.6 20.5 26.36 32.5 43.6 53.6

RWE GY Equity RWE AG 28.83 7.2 8.5 12.3 18 25.14 33.3 46.6 59.9

BAYN GY Equity Bayer AG 19.314 34.1 39 52 68 86 103.5 135 170

BMW GY Equity Bayerische Motoren Werke AG 78.98 16.8 19 26.9 34.7 48.1 61.5 84.5 108

CBK GY Equity Commerzbank AG 15.725 18.6 23.2 30.2 36.6 44.785 53 69.3 90

DBK GY Equity Deutsche Bank AG 16.64 13.7 16.9 28.8 39.1 49.73 61.5 82.3 102

BAS GY Equity BASF SE 42.46 13.9 15.6 21.5 27.4 39.7 52 71 92

HEN3 GY Equity Henkel AG & Co KGaA 84.7 6.8 8 10.6 13.3 17.1 21 29 39.5

SIE GY Equity Siemens AG 188.56 9.4 13.7 19.4 25.2 29.6 31 44 64.5

VOW3 GY Equity Volkswagen AG 89.04 35.2 39 50 66.3 89.2 112.5 152 183.5

EOAN GY Equity E.ON SE 11.245 9.6 11 15.8 20.6 34.5 27.5 52.5 70.5

BEI GY Equity Beiersdorf AG 124 14 14 14 14 14 14 14 14

HEI GY Equity Heidelberg Materials AG 119.3 14.4 18.2 27.9 38.2 53.1 68 99 129

MUV2 GY Equity Muenchener Rueckversicherungs-Gesellschaft AG in Muenchen 487.1 8.2 10.5 14.2 20.3 27.07 34.5 45.6 56.1

FRE GY Equity Fresenius SE & Co KGaA 33.54 6.8 10.6 18.6 27.5 35.27 40 56.1 62.8

SAP GY Equity SAP SE 236.3 26 26 26 26 26 26 26 26

MRK GY Equity Merck KGaA 139.9 5.9 8.4 11.7 16.6 22.88 30 40.7 52.5

ADS GY Equity adidas AG 236.8 24.3 27.1 31.9 37.8 45.19 52.9 65.2 78.7

DTE GY Equity Deutsche Telekom AG 28.89 13.7 16.7 22 27.2 32.6 39.5 50.5 69.5

DHL GY Equity Deutsche Post AG 33.98 7.5 9.1 12.5 15.5 20.9 26 36.5 46.5

FME GY Equity Fresenius Medical Care AG 44.16 6.8 10.6 18.6 27.5 35.27 40 56.1 62.8

MBG GY Equity Mercedes-Benz Group AG 53.8 17.2 19.9 25.3 34.4 47.5 60.5 83.5 107.5

IFX GY Equity Infineon Technologies AG 31.4 72.7 78.7 87.1 95.3 101.73 107.3 116.1 125.1

DB1 GY Equity Deutsche Boerse AG 222.4 18.4 20 22.2 25.6 29.75 34.3 42.2 49.9

VNA GY Equity Vonovia SE 29.32 107 107 107 107 107 107 107 107

P911 GY Equity Dr Ing hc F Porsche AG 58.42 67 67 67 67 67 67 67 67

HNR1 GY Equity Hannover Rueck SE 241.4 8.4 10.9 14.7 21.4 27.79 35 48 58.5

CON GY Equity Continental AG 64.82 13.6 16.4 31.2 46 65.7 85.5 122.5 146.5

CDSUnderlyings

T/Equity ENR GY Equity SY1 GY Equity PAH3 GY Equity MTX GY Equity RHM GY Equity DTG GY Equity SHL GY Equity ZAL GY Equity QIA GY Equity SRT3 GY Equity

0.5 0 2.718 5.998 0 0.546 7.394 2.907 0 0.556 1.531

1 0 1.355 2.991 0 0.272 3.687 1.449 0 0.277 0.763

2 0.94 0.968 4.385 0.614 0.6 3.332 1.722 0.108 0.277 0.837

3 1.156 0.837 4.581 0.592 0.714 3.183 1.71 0.131 0.269 0.859

4 1.257 0.77 4.608 0.647 0.767 3.084 1.704 0.15 0.276 0.868

5 1.313 0.73 4.576 0.679 0.797 3.009 1.689 0.158 0.276 0.872

7 1.369 0.682 4.435 0.712 0.827 2.887 1.659 0.165 0.272 0.872

10 1.386 0.643 4.163 0.731 0.842 2.733 1.616 0.174 0.274 0.865

T/Equity BNR GY Equity AIR GY Equity ALV GY Equity RWE GY Equity BAYN GY Equity BMW GY Equity CBK GY Equity DBK GY Equity BAS GY Equity HEN3 GY Equity

0.5 3.898 1.68 7.583 7.339 0.212 8.687 6.065 5.357 6.65 4.64

1 1.944 1.68 3.781 3.659 0.106 4.332 3.024 2.671 3.316 2.314

2 2.214 1.68 3.619 2.977 0.354 3.896 2.697 3.36 3.626 2.35

3 2.284 1.68 3.526 2.717 0.434 4.503 2.556 3.558 3.673 2.358

4 2.301 1.68 3.449 2.573 0.473 4.715 2.47 3.595 3.655 2.356

5 2.301 1.68 3.386 2.477 0.496 4.778 2.41 3.589 3.616 2.336

7 2.281 1.68 3.259 2.347 0.52 4.718 2.323 3.517 3.514 2.289

10 2.215 1.68 3.08 2.21 0.535 4.464 2.211 3.357 3.335 2.21
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 Table B.2 Dividend Yield term structures for the German stocks in [%]. Reference Date: EOY 2024 

 

 
 

 
 

 
 

 
 

 
 

T/Equity SIE GY Equity VOW3 GY Equity EOAN GY Equity BEI GY Equity HEI GY Equity MUV2 GY Equity FRE GY Equity SAP GY Equity MRK GY Equity ADS GY Equity

0.5 3.645 7.257 6.204 1.603 4.178 4.969 0 1.23 1.943 0.583

1 1.817 3.618 3.094 0.799 2.083 2.478 0 0.614 0.969 0.291

2 1.866 3.503 3.698 0.506 2.127 2.651 0 0.738 0.998 0.526

3 1.869 3.458 3.836 0.409 2.126 2.682 0 0.776 1.002 0.603

4 1.861 3.403 3.875 0.362 2.112 2.676 0 0.793 1 0.639

5 1.85 3.36 3.851 0.332 2.095 2.668 0 0.805 0.998 0.66

7 1.821 3.245 3.751 0.298 2.057 2.612 0 0.811 0.993 0.681

10 1.772 3.075 3.557 0.272 1.992 2.513 0 0.808 0.978 0.693

T/Equity DTE GY Equity DHL GY Equity FME GY Equity MBG GY Equity IFX GY Equity DB1 GY Equity VNA GY Equity P911 GY Equity HNR1 GY Equity CON GY Equity

0.5 0 7.709 3.534 10.268 1.39 2.64 6.386 0 3.239 4.084

1 0 3.844 1.762 5.12 0.693 1.317 3.184 2.527 1.615 2.036

2 4.199 3.815 1.813 4.622 0.571 1.292 3.388 2.73 0.938 1.975

3 7.428 3.755 1.831 4.396 0.529 1.279 3.46 2.768 0.712 1.93

4 8.51 3.703 1.829 4.247 0.507 1.267 3.459 2.764 0.598 1.906

5 8.842 3.633 1.822 4.118 0.496 1.257 3.433 2.746 0.53 1.879

7 8.546 3.496 1.799 3.905 0.479 1.24 3.348 2.691 0.453 1.832

10 7.535 3.296 1.754 3.634 0.465 1.213 3.191 2.589 0.393 1.771

ENR GY Equity 80 100 120 SY1 GY Equity 80 100 120 PAH3 GY Equity 80 100 120 MTX GY Equity 80 100 120

0.5 55.56 51.77 50.21 0.5 25.65 20.63 19.99 0.5 32.13 26.7 25.27 0.5 34 28.05 25.18

1 54.65 51.53 49.75 1 24.44 21.22 20.22 1 29.91 25.69 24.1 1 31.3 27.65 25.51

2 53.23 51.15 49.83 2 23.57 21.37 20.09 2 33.44 26.95 23 2 29.98 27.51 25.61

3 52.52 50.84 49.73 3 23.31 21.58 20.46 3 31.32 26.09 22.73 3 29.51 27.49 25.8

4 51.99 50.54 49.55 4 23.29 21.81 20.79 4 30.15 25.65 22.69 4 29.28 27.51 26

5 51.55 50.25 49.34 5 23.33 22 21.07 5 29.25 25.21 22.51 5 29.13 27.53 26.15

7 50.9 49.79 49 7 23.41 22.28 21.45 7 28.04 24.61 22.28 7 29 27.63 26.43

10 50.2 49.27 48.58 10 23.24 22.26 21.52 10 26.68 23.77 21.76 10 28.66 27.48 26.47

RHM GY Equity 80 100 120 DTG GY Equity 80 100 120 SHL GY Equity 80 100 120 ZAL GY Equity 80 100 120

0.5 39.35 36.78 36.38 0.5 31.83 27.24 26.98 0.5 27.23 22.79 21.96 0.5 43.34 39.92 39.52

1 37.71 36.13 35.81 1 30.81 27.09 26.01 1 26.16 23.31 21.76 1 42.93 40.61 39.61

2 36.83 35.73 35.41 2 29.3 26.39 25.23 2 25.24 23.27 21.96 2 41.66 40.26 39.55

3 36.37 35.57 35.31 3 28.55 26.29 25.27 3 24.96 23.32 22.16 3 41.26 40.2 39.61

4 36.1 35.47 35.25 4 28.44 26.24 25.31 4 24.83 23.38 22.32 4 41.09 40.21 39.7

5 35.93 35.4 35.21 5 27.87 26.21 25.34 5 24.77 23.45 22.46 5 41.05 40.29 39.83

7 35.7 35.3 35.15 7 27.54 26.16 25.39 7 24.72 23.57 22.68 7 41.04 40.44 40.06

10 35.49 35.2 35.09 10 27.24 26.11 25.43 10 24.73 23.73 22.94 10 40.72 40.23 39.91

QIA GY Equity 80 100 120 SRT3 GY Equity 80 100 120 BNR GY Equity 80 100 120 AIR GY Equity 80 100 120

0.5 29.43 24.29 24.88 0.5 48.6 44.82 42.28 0.5 25.53 23.85 21.81 0.5 38.385 38.385 38.385

1 26.13 23.24 22.88 1 47.48 44.51 42.16 1 25.11 22.63 20.09 1 38.385 38.385 38.385

2 25.26 23.07 21.97 2 46.49 44.33 42.59 2 26.1 23.25 21.13 2 38.385 38.385 38.385

3 24.96 23.22 22.24 3 45.96 44.16 42.7 3 25.54 23.14 21.35 3 38.385 38.385 38.385

4 24.83 23.34 22.44 4 45.57 43.99 42.7 4 25.31 23.18 21.62 4 38.385 38.385 38.385

5 24.83 23.49 22.65 5 45.25 43.82 42.64 5 25.06 23.12 21.72 5 38.385 38.385 38.385

7 24.84 23.7 22.94 7 44.71 43.47 42.45 7 24.81 23.14 21.95 7 38.385 38.385 38.385

10 24.78 23.81 23.11 10 44.01 42.94 42.06 10 24.19 22.78 21.77 10 38.385 38.385 38.385

ALV GY Equity 80 100 120 RWE GY Equity 80 100 120 BAYN GY Equity 80 100 120 BMW GY Equity 80 100 120

0.5 24.26 16.97 15.87 0.5 27.95 24.4 24.92 0.5 40.02 38.24 38.54 0.5 32.77 27.69 26.22

1 22.73 17.69 16.17 1 27.2 25.07 24.7 1 39.77 38.19 38.28 1 30.77 26.68 24.81

2 20.62 18.11 16.85 2 26.05 24.98 24.45 2 38.32 37.47 37.36 2 27.44 25.29 24.08

3 19.98 18.02 17.16 3 26.19 25.12 24.58 3 36.77 35.94 35.84 3 26.96 25.33 24.43

4 19.81 18.25 17.54 4 26.03 25.13 24.64 4 35.78 35.03 34.87 4 26.4 25.3 24.75

5 19.52 18.26 17.69 5 25.84 25.06 24.63 5 34.88 34.17 33.99 5 26.11 25.24 24.79

7 19.34 18.41 17.96 7 25.6 24.94 24.57 7 33.61 33.02 32.82 7 25.91 25.25 24.88

10 18.96 18.23 17.88 10 25.32 24.83 24.58 10 33.04 33.23 31.9 10 25.55 25.04 24.75

CBK GY Equity 80 100 120 DBK GY Equity 80 100 120 BAS GY Equity 80 100 120 HEN3 GY Equity 80 100 120

0.5 37.86 31.97 29.46 0.5 34.75 30.04 28.56 0.5 30.65 25.61 23.92 0.5 23 17.6 17.35

1 37.2 32.44 29.65 1 33.88 30.74 29.07 1 28.67 24.56 22.54 1 21.53 18.1 17.25

2 35.35 32.82 31.07 2 32.1 30.16 29.27 2 25.45 23.35 22.04 2 20.14 18.06 17.42

3 34.32 32.45 31.2 3 31.29 30.18 29.79 3 25.05 23.28 22.22 3 19.61 18.05 17.48

4 33.91 32.39 31.37 4 31.29 30.45 30.15 4 24.76 23.39 22.57 4 19.34 18.09 17.59

5 33.54 32.26 31.41 5 31.19 30.51 30.25 5 24.49 23.36 22.68 5 19.12 18.08 17.64

7 33.13 32.16 31.49 7 31.26 30.77 30.57 7 24.27 23.37 22.83 7 18.88 18.1 17.73

10 32.58 31.78 31.23 10 31.05 30.66 30.51 10 23.87 23.13 22.69 10 18.54 17.88 17.53
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Table B.3 Implied Volatility sections for 80% 100% 120% Moneyness. Volatility expressed in [%]. Reference Date: EOY 2024 

 

 

Figure B.1 Interest rates term structure – Tenor: 1 day (ESTER curve). Rates expressed in [%]. Reference Date: EOY 2024 

SIE GY Equity 80 100 120 VOW3 GY Equity 80 100 120 EOAN GY Equity 80 100 120 BEI GY Equity 80 100 120

0.5 29.63 25.31 25.18 0.5 31.04 27.63 26.57 0.5 26.36 20.77 19.31 0.5 24.79 19.48 18.56

1 29.42 25.62 24.7 1 29.57 26.43 25.22 1 24.49 20.45 18.38 1 23.02 19.4 18.07

2 27.93 25.84 24.59 2 27.71 25.33 24.25 2 22.55 20.11 18.76 2 21.97 19.19 18.03

3 27.35 25.53 24.63 3 27.15 25.48 24.96 3 21.74 19.74 18.99 3 21.25 19.09 18.05

4 26.95 25.45 24.62 4 27.07 25.67 25.24 4 21.39 19.81 19.22 4 20.91 19.14 18.2

5 26.65 25.39 24.64 5 26.88 25.7 25.32 5 21.09 19.79 19.28 5 20.7 19.18 18.34

7 26.27 25.32 24.73 7 26.71 25.76 25.47 7 20.76 19.85 19.47 7 20.48 19.27 18.54

10 25.83 25.09 24.64 10 26.61 25.8 25.56 10 20.43 19.7 19.38 10 20.13 19.14 18.49

HEI GY Equity 80 100 120 MUV2 GY Equity 80 100 120 FRE GY Equity 80 100 120 SAP GY Equity 80 100 120

0.5 30.72 26.36 25.34 0.5 26.42 21.83 21.09 0.5 29.17 24.02 22.64 0.5 30.5 25.74 25.08

1 29.8 26.35 25.04 1 24.62 21.59 20.3 1 27.38 23.77 22.21 1 30.2 26.16 25.09

2 28.33 26.14 25.28 2 22.9 20.42 19.24 2 26.14 24.04 22.57 2 28.19 25.8 24.85

3 27.72 26.05 25.36 3 22.41 20.41 19.64 3 25.7 23.99 22.85 3 27.34 25.59 24.72

4 27.39 26.05 25.47 4 22.12 20.58 19.87 4 25.51 24.12 23.18 4 26.93 25.46 24.7

5 27.17 26.03 25.52 5 21.86 20.61 20.02 5 25.36 24.21 23.43 5 26.65 25.37 24.67

7 26.91 26.03 25.62 7 21.73 20.73 20.2 7 25.25 24.36 23.77 7 26.24 25.21 24.62

10 26.61 25.89 25.54 10 21.33 20.54 20.12 10 24.96 24.28 23.85 10 25.84 25.03 24.59

MRK GY Equity 80 100 120 ADS GY Equity 80 100 120 DTE GY Equity 80 100 120 DHL GY Equity 80 100 120

0.5 30.23 25.01 24.4 0.5 33.75 28.92 27.95 0.5 22.92 17.27 17.53 0.5 27.95 22.66 21.66

1 28.54 25.32 24.57 1 32.31 29.1 27.73 1 21.39 16.42 16.52 1 26.76 22.47 20.75

2 27.12 25.32 24.73 2 30.34 28.23 26.98 2 17.74 15.63 16.32 2 24.37 21.87 20.34

3 26.68 25.28 24.79 3 29.74 27.97 27.26 3 16.83 16.65 17.54 3 23.73 21.74 20.45

4 26.44 25.29 24.85 4 29.58 28.05 27.32 4 17.04 17.35 17.82 4 23.35 21.66 20.52

5 26.28 25.29 24.88 5 29.44 28.11 27.42 5 17.45 17.76 18 5 23.11 21.6 20.57

7 26.04 25.28 24.94 7 29.15 28.15 27.58 7 18 18.01 18.02 7 22.78 21.51 20.63

10 25.88 25.18 24.84 10 28.95 28.19 27.76 10 18.29 18.18 18.17 10 22.49 21.43 20.67

FME GY Equity 80 100 120 MBG GY Equity 80 100 120 IFX GY Equity 80 100 120 DB1 GY Equity 80 100 120

0.5 34.24 30.5 28.77 0.5 32.64 26.85 24.7 0.5 38.57 35.08 33.58 0.5 24.63 19.02 17.4

1 32.56 29.62 27.95 1 30.82 26.05 23.96 1 37.48 34.71 33.4 1 22.9 18.87 17.49

2 31.08 27.86 25.96 2 29.64 25.95 24.22 2 36.87 34.44 32.82 2 21.65 19.02 17.78

3 30.05 27.12 25.25 3 29.95 27.1 25.86 3 35.62 34.7 34.25 3 31.1 19.06 17.98

4 29.68 27.03 25.27 4 29.6 27.31 26.23 4 35.91 34.59 33.74 4 20.9 19.17 18.2

5 29.42 27.05 25.45 5 29.45 27.51 26.55 5 35.59 34.47 33.74 5 20.79 19.25 18.35

7 29.26 27.26 25.87 7 29.44 27.93 27.12 7 35.26 34.36 33.74 7 20.7 19.4 18.59

10 28.29 26.55 25.36 10 29.74 28.58 27.91 10 34.77 33.99 33.44 10 20.41 19.28 18.54

VNA GY Equity 80 100 120 P911 GY Equity 80 100 120 HNR1 GY Equity 80 100 120 CON GY Equity 80 100 120

0.5 31.72 29.26 28.07 0.5 35.4 29.63 29.85 0.5 25.58 20.24 19.45 0.5 34.91 30.2 28.29

1 31.46 28.91 27.75 1 32.52 30.22 29.66 1 24.62 20.63 19.4 1 34.04 30.67 28.74

2 30.48 28.66 27.12 2 31.55 30.07 29.5 2 23.65 20.91 19.7 2 31.05 28.87 27.35

3 30.37 28.83 27.56 3 31.12 29.94 29.41 3 23.4 21.16 20.02 3 30.77 29.02 27.74

4 30.36 29 27.9 4 30.85 29.84 29.35 4 23.34 21.4 20.32 4 30.68 29.18 28.05

5 30.34 29.1 28.11 5 30.66 29.77 29.3 5 23.38 21.63 20.6 5 30.59 29.24 28.22

7 30.37 29.29 28.45 7 30.4 29.64 29.21 7 23.57 22.07 21.13 7 30.52 29.38 28.5

10 30.14 29.22 28.5 10 30.11 29.47 29.09 10 23.98 22.71 21.86 10 30.31 29.34 28.58


